戦略思考入門

フレームワーク組み合わせで深まる洞察

自分の仕事にどう活かす? 3C分析やSWOT分析といったフレームワークの名前は知っていましたが、今週の学習を通じて、これらを自分の仕事にどのように活用すればよいかが少しずつ見えてきた気がします。特に、私の属する業界では3C分析をベースに、それぞれの要素にSWOT分析を適用することで、より深い洞察が得られるのではないかと考えるようになりました。フレームワークを組み合わせて使用することも効果的だと言えます。 新戦略の視点、何が必要? 私の仕事では、部門の新しい戦略を考えるために、競合他社の分析をかなり詳細に行ってきました。しかし、それによって自社のパフォーマンスがなぜ今の状態にあるのかを分析する際、競合が優れているのか、自社の戦略が不十分なのかだけでなく、市場全体や業界の環境についても視野に入れる必要があると改めて気づきました。この視点を実践していきたいと考えています。 来期計画はどう描く? 来年2月には来期計画を経営会議で報告する予定です。そのために、マクロ環境分析を丁寧に行い、これまで積み上げてきた競合他社分析や自社分析と組み合わせて3C分析を行ってみたいと思っています。その際には、各要素においてSWOT分析も取り入れ、多角的な視点で分析を行い、来期の計画策定に役立てるようにしたいと考えています。

クリティカルシンキング入門

数字の裏側へ一歩踏み出す

分析の丁寧さは? 教材の事例を通して、分析の丁寧さがいかに現状把握に直結するかを痛感しました。細かな分析を怠ると、本来のイシューを見誤ってしまい、解決策も誤ったものになってしまう可能性があると理解しました。また、施策のタイミングが効果に大きく影響するため、現状分析に再度立ち戻る重要性を感じました。提示された数字から更に見えにくい指標を導きだし、その裏に隠れた課題を発見することも大切だと学びました。 数字は何を語る? 数字を分解し、それぞれの数値が持つメッセージや背景を考える作業は、普段あまり扱わない分野であったため難しさを感じました。しかし、新聞やニュースで見かける数字を自分なりに解釈し、分析することができるのではないかという自信にもつながりました。さらに、グラフの種類や見せ方の工夫の大切さについても演習を通して再認識しました。 数字に慣れるコツは? とにかく、数字に慣れ、しっかりとした分析を行うことが重要だと感じました。苦手意識にとらわれず、興味のある分野から取り組んでいくことで、数字を楽しむことができるのではないかと思います。ビジネスの現場では、感覚的な判断ではなく、数字を用いて現状を明確に把握し分析することが必須だと改めて実感し、この講座を受講した初心を取り戻す良い機会となりました。

クリティカルシンキング入門

イシューを見極める力を身につけよう

プレッシャーにはどう対処する? 経営者としての視点に立つと、プレッシャーが非常に大きいことを実感しました。ここで、よりクリティカルな思考が必要だと感じました。 「イシュー」とは何を意味する? 今週、主に学んだのは「イシュー」についてです。イシューとは、今ここで答えを出すべき問いのことを指し、ブレずに意識し続けるために疑問文の形を取ります。長期間の目標とは異なり、「今」答えを出さなければならない問いを具体的に考える必要があります。 どう具体策を決める? この考え方は、特定の業務だけでなく、さまざまな意思決定の場面で活用できると感じました。特に私は業務運用の監督をしているため、システムや社内ルールの変更に対応する際、具体的な案を短期間で決定する必要があります。その際、短期的に素早く回答を見出し、周囲を巻き込むためにも、疑問文の形で一つ一つのイシューに向き合いたいと思います。 どのように行動計画を描く? 学んだことを実際に活かしていくために、まず「イシュー」を意識的に捉え、それを継続的に意識し、関係者と共有しながら全体の方向性を考えたいと思います。周囲をうまく巻き込むためには、関連動画で学んだことが非常に役立ちました。身近な例に置き換えることで関係者も納得し、共に同じ目標に向かえるよう促したいです。

データ・アナリティクス入門

データ分析に固執しない学びの本質

効果検証を改善するには? 今週の講義内容は、すでに実践していることをさらにブラッシュアップして継続する必要があると感じました。特に効果検証については、ノイズを排除しきれずにABテスト自体が難しい場合や、施策の実施数が多く、全ての分析を物理的に行うことが困難な場合があります。 デジタル時代のデータ分析とは? デジタル領域では、質よりもスピードが重要な場面が多くありますので、完璧なデータ分析に固執しすぎないことも心掛けたいです。データ分析はあくまで結果を出すための一つの手段に過ぎず、それ自体を目的としないことが大切だと再認識しました。 仮説思考を磨くために何が必要か? また、仮説思考を鍛えるためには、思考力を磨くことが最も重要だと感じました。情報を集めたり事象を分析しているだけでは、思考の精度は上がりません。本当に必要な情報を見極めるために、何のために情報を集めるのかを自分の頭で考えるトレーニングが必要です。 行動で成果を生み出す方法は? さらに、答えを持っている人に対して自分の仮説を試してみることも大事です。不正解でも良いので、アウトプットする機会を増やし、トライアンドエラーを繰り返すことが重要です。成果は行動することでしか生み出せないため、とにかく積極的にアクションを起こすことが求められます。

データ・アナリティクス入門

実務に活かすMECEで新視点発見

問題解決の難しさに気づく 実践演習を通じて、私は問題特定の際に表面上の情報だけを処理しがちで、問題解決のステップを踏むことが難しいと理解しました。これにより、課題を適切に提起できることが限られていることにも気づかされました。MECEやロジックツリーという言葉は知識として持っていましたが、具体的に活用したことはありませんでした。しかし、MECEはデータを重複なく、漏れなく整理する考え方で、実務でも非常に有効であると感じ、直ちに活用したいと思いました。 新視点での顧客セグメンテーション 実務において、顧客セグメンテーションを考える際、これまでは年齢、性別、居住地などの従来の基準に頼っていました。しかし、MECEの考え方を用いることで、新しい視点からセグメンテーションを検討し、より優れた分析ができる可能性を探りたいと考えています。 新手法の有効性は? 新たな顧客セグメンテーションの手法として、まず取引頻度と勤務先の業種という二つの基準を用いて分析を進めてみます。この二つでセグメンテーションを行い、既存の分析手法と比較することで、その有効性を検証したいと考えています。現時点では、取引頻度や業種に関するデータの分布を十分に把握していないため、まずはどの基準で分類を行うのか、データを確認していきたいと思います。

戦略思考入門

フレームワークで広がる戦略の視点

戦略構築で見落としは? 戦略を構築する際に、フレームワークを活用することで見落としを減らせると感じています。代表的なフレームワークとして、3C分析、SWOT分析、バリューチェーン分析などがあります。分析が終わった後は、「整合」を重視して戦略を立てることが重要です。全社的に考えることが求められ、一部門のみで整合がとれているだけでは必ずしも良い戦略とは言えないことがあります。また、短期的に成果を上げても、中期的には見直しが必要な場合もあるため、短期的施策として実施期間を設定したり、見直しの指標を設けたりすることが大切です。 会社状況をどう整理? これまで、自分で会社全体の状況を整理する機会がなかったため、まずは3CとSWOT分析から始めてみたいと考えています。その際、各部門ごとに発表される戦略や目標に関する資料を活用し、それを元に自分なりに1つの資料としてまとめて分析します。この全体像の中から、自分のチームとして何ができるかを考える予定です。 チーム貢献、どう考える? 会社全体および各部門の戦略を分析し、自分のチームがどのように貢献できるかを考えています。再来週には社員全体で今期の中間報告会が予定されているため、それまでに分析を完了し、チームとして事業に貢献できる部分を明確にしたいと考えています。

クリティカルシンキング入門

問いが紡ぐ学びの物語

問いをどう捉える? 私が今回実感したことは、まず「問い」を立てる重要性です。具体的には、問いを言語化することで自分の方向性が定まり、その後の検討に一貫性が持たせられる点が大きなポイントです。また、問いを記録することで、後になって論点がずれることを防ぎ、さらにそれを他者と共有することで、常に認識のすり合わせができる点も大切だと感じました。 イシュー設定は難しい? しかし、実際にはイシューを設定する作業が容易ではありません。なぜなら、問いを作るためには脳内のエネルギーを費やす必要があり、また他者との調整にも労力が必要となるため、ついその作業を回避してしまいがちです。それでも、実際に取り組んでみると、設定に対する投資よりも得られる効果が大きいと実感できるため、重要なテーマに対してはその投資を惜しまず行う価値があると考えています。 実践事例から何を学ぶ? さらに、実践演習のケーススタディにおいて、あるファストフードチェーンの事例が印象に残りました。具体的には、初めに「客離れ」の問題に取り組み、その後で「客単価」の向上に注力したという順序が採用されていた点に興味があります。もしこの順番が逆になっていた場合、どのような結果になっていたのかを考えると、問題解決のプロセスにもメリハリが必要であると再認識しました。

戦略思考入門

不確実を戦略に変える挑戦

戦略的な問いは? 講義中、「戦略的な人とはどのような人物か」「戦略的とは何か」という問いに触れ、誰もが大小さまざまな戦略的行動を取っていると実感しました。しかし、自分自身が十分に戦略的に動けていないと感じる背景について考えた結果、主に二点あると気付きました。 戦略が足りない理由は? まず、不確定な事柄を明確にするための思考が十分に身についておらず、「自分には難しい」と考えたり、俯瞰的に全体を捉える時間が足りなかったりすることが挙げられます。次に、独自性を意識して行動するという観点が不足していると感じました。これらの点を研修期間中に克服し、意識して身につけていきたいと思います。 活かし方を考える? この学びは、今後以下の二つの場面で活かしたいと考えています。 数値目標はどうする? 一つ目は、組織の数値目標や状態目標達成に向けたアクションプラン作成です。目標は設定しているものの、さまざまな角度からのアプローチがある一方で、具体的な行動計画に落とし込めていません。直近の経験と直感に頼ったアクション決定の癖を是正し、より精緻なプランを構築していきたいです。 提案はどのように? 二つ目は、顧客への案件提案の際です。自社ならではの独自性を真剣に追求し、提案内容に反映させることが今後の課題です。

データ・アナリティクス入門

言語化と分析で見える未来

比較ってどう見る? 分析とは比較することであり、これまであまり意識してこなかった点でしたが、意識することで適切な図表や色の検討が可能になります。根底にあるのは目的であり、目的を意識することで、比較して何を伝えたいのかが明確になります。 自分化の意味は? 学びのプロセスにおいて、「言語化」「教訓化」「自分化」は非常に重要な考え方です。特に、教訓化と自分化が自分自身の成長に大きく寄与すると実感しています。 施策にどう活かす? 業務を分析し、施策を練る際には、根拠となる情報を集めて問題点を特定することが有効です。また、「言語化」と「教訓化」を意識することで、会議などで他人の進捗状況を聞いた際に、自分の考えの幅や経験値を広げる一助となっています。 仮説はどう考える? 分析に取り組む際は、目的を常に意識することが大切です。まずは「現状を可視化する」ために図表化を実施し、その結果を踏まえて仮説を立案します。そこから、より限定的な部分の分析を進めることで、精度の高い課題の解決へと結び付けています。 会議はどう捉える? 内部の会議においては、ただ受け身で情報を聞くのではなく、他人の発言をそのまま鵜呑みにせず、原理原則を抽出して自分自身の状況にどう反映できるかを検討することが重要であると感じました。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

データ・アナリティクス入門

仮説で読み解く成功のヒント

仮説の基本は何? 今回の学習で、仮説について深く学びました。仮説とは、ある論点に対して一時的に立てる答えのことで、例えば、ノンアルコール商品の販売増加を見る際、対象となる消費者をビールが好きな運転者や妊婦などに分けて分析する、といった考え方が応用できると感じました。 仮説の役割はどう? また、仮説には問題解決のための仮説と、結論を導くための仮説があることを理解しました。時間軸として、過去、現在、将来の視点で検討していくこともポイントでした。 売れる理由は何? 具体的な例として、①なぜある商品が売れるのか、または売れていないのかについての仮説では、若い世代に人気で刺激的ではない味が影響している可能性や、商品が不安定なために安定した需要を得られていないのではないかといった視点が挙げられました。②なぜある地域や取引先で売れるのか、あるいは売れていないのかを考える際には、その地域に若い人が多いのか、高齢者が多いのかという点が仮説の根拠になり得るという点が印象的でした。 検証データはどう活かす? さらに、仮説を検証するためには比較可能なデータ収集が不可欠であり、アンケートを実施する際の設問項目の考え方や、どのようなアンケート内容が仮説と結論を結びつけるのに適しているかという点にも関心を持ちました。

戦略思考入門

迷い捨てROIで勝つ判断の秘訣

判断基準はどう選ぶ? 選択(捨てる)ためには、判断基準を持ち、複数の視点から仮定を置いて考えることが大切です。また、ROI(投資効果)も踏まえた上で判断する必要があります。顧客の利便性を第一に考え、伝統や惰性に流されず、専門家に任せるという意識も重要だと感じました。 バランスはどう取る? 優先順位の考え方においては、トレードオフの概念を学びました。つまり、何かを得るためには何かを犠牲にするということです。複数の要素が存在する場合、両立が難しいときには、それぞれのバランスを取り、効果が最大化するポイントを見つけることが求められます。ある要素同士が互いに相殺し合う場合には、どの要素に注力するかを明確にして、メリハリのある資源配分を行うことが最善の方法だと考えました。 戦略改善のコツは? 限られた時間の中で、常に優先順位を意識して作業を行っています。実際には捨てる選択をすることが多いと感じますが、その順位の付け方については、今ひとつ経験則に頼っている部分も否めません。日々の作業は何とか回っているものの、未来に向けた戦略を立てる際には、判断基準をより明確にする必要があると実感しました。今後は、各要素を数値化し、ROI(投資効果)をしっかりと分析することで、より合理的な判断ができるよう努めたいと思います。

「考える」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right