デザイン思考入門

自分も受講したい!共感ステップの実践

なぜ共感が大切? 「共感ステップ」では、単なる情報収集にとどまらず、ユーザーの課題や背景を深く理解し、求める解決策を的確に見極めることが重要であると学びました。現在取り組んでいるワークショップ形式の研修デザインにおいても、受講者の視点に立ち、彼らが何を感じ、何を求めているのかを探るプロセスに重点を置く必要があると考えます。例えば、研修設計の段階で自ら受講者となって演習を体験し、ショートケースの妥当性や適切な所要時間を確認すること、また事前アンケートにより受講の狙いや期待を把握することで、表面的なニーズだけでなく本質的な課題も見極めることができると実感しました。 どう適用する? 共感ステップについて、具体的な研修デザインへの適用方法をよく考えられている点は非常に印象的です。より多くの受講者の視点やニーズを探るアプローチを試みることで、さらに多面的な理解が得られると感じます。 どの調査が有効? また、受講者の背景や課題を深く理解するために、どのような追加の調査手法が有効か、そしてワークショップデザインで共感をさらに深めるためにどのような方法を試すべきかを考えることも有意義だと思います。 どう設計すべき? 事前アンケートの実施や自身での演習を通じて、以下の点が重要であると改めて認識しました。まず、受講者のペルソナに応じた研修の難易度設定とシナリオ作成です。受講者の職種、経験年数、課題意識を踏まえ、適切なレベル感で研修を設計し、理解しやすいストーリー展開を意識することが求められます。次に、説明資料の粒度と所要時間のバランス調整が重要です。受講者の集中力や理解度を考慮し、必要な情報を適切なボリュームで提供するとともに、講義とワークの時間配分を最適化する工夫が必要です。さらに、ワークの難易度設定と題材設計については、受講者が主体的に考え、実践的なスキルを習得できるよう、初心者でも取り組みやすく、発展的な応用が可能な内容を用意することが大切です。 どう改善する? 今後も、受講者の視点に立ち、実際の学びにつながる研修デザインを追求していきたいと考えています。今週は、共感ステップの実践を通じて、ユーザー理解の深め方について学びました。現場に足を運び、ユーザーの行動や発言を客観的に捉える「現場観察」と、自らが取り組む中で感じる感情や視点を体験する「参与観察」との違いが印象に残り、これらの手法を組み合わせることで、ユーザーの潜在的なニーズや課題の本質を見極めるための深い分析が可能になると感じました。今後は、実践の場を通じて共感ステップをより意識的に活用し、受講者視点の学びを深めながら、研修デザインやサービスの改善につなげていきたいと思います。

データ・アナリティクス入門

振り返りで気づいた仮説の力

仮説とは何か? 仮説とは、ある論点に対する仮の答え、もしくは分からない事に対する仮の答えを指します。仮説には主に「結論の仮説」と「問題解決の仮説」があります。結論の仮説はある論点に対する仮の答えであり、問題解決の仮説は問題解決のプロセスに沿ったものです。この場合、What(何が問題か)、Where(どこで問題が発生しているか)、Why(なぜ問題が起きているのか)、How(どう解決するのか)の観点で考えます。 仮説を持つことの価値とは? 仮説で考えることの意義は以下の通りです。 1. **検証マインドの向上と高まる説得力**: 仮説を持つことは検証作業とセットで動くことを意味します。 2. **関心・問題意識の向上**: 関心や問題意識のないところには仮説は生まれません。日頃から自分の仕事に関連して仮説をもつように心がけることが重要です。 3. **スピードアップ**: まず自分なりにあらゆる情報を総動員してこれがいいのではないかと仮説を持ち、テスト的に実施しながら検証する手順を踏むことで、スピーディに対応できます。 4. **行動の精度向上**: 仮説検証のサイクルを早く回すことで、それに伴う行動の精度が向上します。 データ収集の重要性 原因の仮説を立てる際には、仮説を検証するためのデータを集めます。データには既存のデータと新しいデータがあります。既存のデータとしては、自社内にあるデータ、一般公開されているデータ、パートナー企業が取得しているデータなどがあります。新しいデータとしてはアンケート(広くデータを収集)、インタビュー(狭い範囲で深く収集)があり、追加で調査が必要な箇所に絞り、新たなデータを取ることが重要です。 仮説を立てる際の注意点は? 複数の仮説を立てる際には、以下の点に注意します。 - **仮説同士に網羅性をもたせる**: 何を比較の指標とするか意図的に選択し、何を見ればよいのか、何と比較したらいいのか意図をもって考えます。 - **データ収集する際の注意点**: 誰に聞くか(意味のある対象から聞けているか)、どのように聞くか(比較するためのデータ収集を忘れない。反論を排除する情報にまで踏み込めているか)に注意します。 フレームワーク活用のすすめ 仮説を考える際には、3C(市場・顧客、競合、自社)や4P(商品、価格、場所、プロモーション)のフレームワークを活用します。また、仮説検証のスピードを上げ、仮説検証のサイクルを早く回すことも重要です。 仮説の立て方が分からない方には、仮説を考える意義や、日頃から自分の仕事に関連して仮説を持つように心がけることが有効です。

データ・アナリティクス入門

実践で磨くA/Bテスト活用術

フレームワークの使い方は? 今週の講義は、具体的なフレームワークや分析手法を紹介するものではなかったものの、複数の視点を取り入れて考察する過程が印象的でした。仮説の立案や必要なデータの検討にあたってフレームワークを用いた結果、回答がしやすく感じられ、今後も折に触れて活用していきたいと思います。 データ活用はどう? また、ある指導者の思考方法に沿って考えることで、データ活用の体系的な流れが見えてきました。A/Bテストについては、アンケート作成のしやすさやデータ収集の容易さから非常に便利なツールだと感じました。先週のホテル宿泊客向けの設問、たとえば「食事か部屋か」という内容は、A/Bテストに最適な例だと思います。以前に似た分析を行った経験もあり、体系的に学んだことで活用の幅が広がったと実感しました。調査対象以外の条件を統一するという基本的な考え方も、以前学んだ内容を思い出させるもので、理解しやすかったです。さらに、同じ環境や条件下でランダム化を行うことで、精度の高いデータが得られる点にはしっかりと納得できました。 PDCAで進める秘訣は? A/Bテストは実施が簡単で、所定の時間内に複数回行えるため、PDCAサイクルを迅速に回しながら正解に近づける点が魅力的です。日常生活や業務での応用については現段階では明確ではありませんが、来月から本格的に業務が始まれば、積極的に活用していきたいと考えています。日常への適用はやや難しいと感じるものの、A/Bテストに類する試みが可能であれば、試してみたいと思います。また、今週はストーリー形式で原因追及を行う講義であったため、新しい手法としてのA/Bテストを講義内容に当てはめるのは少し難しく感じましたが、今後も機会があればどんどん利用していきたいです。 小さな失敗の学びは? 次回の業務では、ぜひA/Bテストを活用してみたいと思います。ある書籍で、成功の本質は致命的でない小さな失敗を積み重ね、そこから成功のカギを見出すことだと学んだこともあり、PDCAサイクルをより迅速に回すために、この手法を取り入れていくつもりです。今週の講義内容については、統計の視点からも改めて振り返り、深く学んでみたいと考えています。先週と今週のマーケティングに関連する講義や、過去に読んだ書籍を踏まえると、再び深く学んでみたい部分もありますが、やるべきことが増えているため、優先順位をつけながら学習していくつもりです。 AIに見抜かれた理由は? なお、Q1の回答で少し手を抜いたところ、すぐにAIに気付かれてしまい、驚きました。来週は引越しのためバタバタしそうですが、グループワークの課題がなかったのはありがたかったです。

データ・アナリティクス入門

正しい思考で磨く自分の軌跡

正しい思考は何? 沢山のフレームワークが出てきましたが、本質は正しい考え方や思考方法を知り、学び、定着させることだと感じました。習得するためには継続的な取り組みが必要で、これまでノートにまとめたメモを見返しつつ、改めてここに整理してみました。 仮説をどう作る? 【仮説の構築】 まず、問題を明確にする(What)、問題箇所を特定する(Where)、原因を追求する(Why)、そして解決策を立てる(How)のプロセスを大切にしています。仮説を立てる際には、複数の可能性を網羅し、一つに決め打ちしないことを意識しています。 また、取り巻く環境を3C(Customer:市場や顧客、Competitor:競合、Company:自社)の視点で考え、自社の状況は4P(Product:製品、Price:価格、Place:場所、Promotion:販促手法)で検討することで、より具体的な分析が可能になります。 情報の取り方は? 【データ収集】 既存のデータや一般に公開されている情報、パートナーの所持するデータを確認することから始め、さらにアンケートやインタビューなどで新たに情報を集める取り組みを行っています。誰に、どのように情報を収集するか、また比較できるデータを忘れずに取る点が重要だと意識しています。 どう考えを広げる? 【仮説思考】 仮説とは、ある論点に対する一時的な答えです。結論や問題解決のための仮説を、知識を広げ多角的な視点から検討することで、説得力と行動の精度を高めることができます。思考実験や「なぜ?」を繰り返すなど、ロジックツリーを活用しながら多様な仮説を生み出し、常に発想を広げる努力が求められます。 仮説はどう検証? 【仮説の検証】 仮説と検証はセットで考え、投資額や巻き込む人数、不確実性といった観点から必要な検証レベルを見極めます。初期段階で枠組みを設定し、定量・定性のデータを収集・分析することで、より客観性のある仮説の肉付けや再構築を行うようにしています。 市場をどう見る? 【マーケティング・ミックスとその他の分析手法】 製品戦略、価格、流通、プロモーションのそれぞれの側面を4Pで検証することに加え、5Aカスタマージャーニーを活用して現代の顧客行動を捉えています。また、クロス集計分析を通して、全体の傾向や特徴、特異点を把握し、次の打ち手を考えるための洞察を得ることも重視しています。 実行にどう生かす? 最終的には、これらのフレームワークや手法を日常的に活用することで、検証マインドを鍛え、チーム全体に浸透させる意識を持つことが、戦略の立案や実行に大きく寄与すると実感しました。

リーダーシップ・キャリアビジョン入門

心つながる共創リーダーの軌跡

自分に余裕はあるか? エンパワメント型リーダーシップを発揮するには、まず自分自身に時間的・精神的余裕を持つことが大切です。その上で、部下のスキルや経験はもちろん、価値観や性格を深く理解し、部下のモチベーションを引き出して自律的な行動を促す必要があります。 委任時のポイントは? また、業務を委任する際には、部下が「分からない」「できない」「やりたくない」といった状態にあるかどうかを見極め、論理面だけでなく感情面にも配慮することが求められます。具体的かつ明確な目標や計画は、6W1Hなどの手法を用いて提示することで、効果的に伝えることができます。 仕事の適材適所は? さらに、全ての仕事が誰にでも適しているわけではありません。遂行レベル、目標の難易度、不確実性、緊急度などを踏まえ、適材適所の配置を心がけることが重要です。 新制度で期待は? 今年から人事制度が変更され、各メンバーにはより高い役割が期待されています。従来のように個々に役割と業務目標を示すだけでなく、個人ごとの期待役割に応じた目標設定と目線合わせが重視されるようになりました。このプロセスを通じて、メンバー間の相互理解を深めるとともに、主体性やモチベーションの向上が期待されています。 共創の時間は確保? 目標設定では、管理者が一方的に指示するのではなく、方向性を示しながらメンバーと共に考える時間を確保することが鍵となります。この共創的なプロセスにより、メンバーは支援されている実感を得るとともに、不安や懸念も具体的に共有できるため、より実効性の高い目標設定とチーム全体のパフォーマンス向上につながります。 期待役割はどう? 【第1段階:期待役割の明確化と共有】 各メンバーの期待役割を明確に定義し、個別面談を通じて組織の方向性と求める役割を丁寧に説明します。メンバーからのフィードバックを受けながら、初期の理解を確認することがポイントです。 共創目標は? 【第2段階:共創的な目標設定】 期待役割に基づき、マネージャーが目標設定の方向性を提示し、メンバーと共に具体的な業務目標を検討するワークショップを実施します。メンバーの意見や懸念を反映し、6W1Hを意識した具体的かつ測定可能な目標を共に設定します。 合意形成はどう? 【第3段階:目標の合意形成とフォローアップ計画】 設定された目標について最終確認と合意を行い、目標達成に必要なリソースや支援体制を整えます。また、定期的な進捗確認のためのミーティングスケジュールを組み、目標達成の過程で成長機会を明確にして継続的な対話を行う仕組みを整備します。

データ・アナリティクス入門

再発見!数字が語る学びのヒント

講義内容は何を学んだ? 必須部分の講義を受ける中で、これまで一部しか活用できていなかった知識に改めて気づくことができました。グループワークの準備で実践した際にも、新たに把握すべき点があるように感じました。 関連動画はどう見る? 関連動画が充実しているため、改めて視聴して理解を深めたいと思います。 代表値の多様性は? 代表値については、単純平均だけでなく、加重平均や幾何平均、中央値が存在することを学びました。また、全体感を把握するための円グラフや、構成要素の割合とばらつきを見るヒストグラム(標準偏差を用いる)の活用も理解できました。 散布図の意義は? 散布図は、2つの変数の関係性を探るグラフとして有効であると実感しました。相関関係と因果関係は切り離して考える必要があり、関係性は相関係数など数式で表現できる点も印象的でした。 度数分析のコツは? 度数分析では、ヒストグラムを用いて集団の特性を把握する方法について学びました。正規分布だけでなく、必ずしも正規にならないケースや、階級幅の取り方(スタージュの公式など)にも触れることができました。 時系列の変化は? 時系列分析では、過去のデータから将来の予測を試みる手法として、横軸に時間、縦軸にデータをとることでトレンドの変化や予測外の出来事の影響を確認する方法を学びました。傾向変動、循環変動、季節変動、不規則変動に注目し、直近と長期のデータ双方に着目する重要性も理解しました。 パレート効果は何か? パレート分析では、20/80や30/70の法則を棒グラフと累積量を示す折れ線グラフで確認する方法を学び、場合によっては10/90となることもあると知りました。 ウォーターフォールは? ウォーターフォールチャートについては、複数の構成要素を階段状に表現し、正負の要素を分けて時系列での変化を詳細に読み取る手法が紹介されました。ただし、場合によっては円グラフや棒グラフの方がシンプルで分かりやすいこともあるため、状況に応じた使い分けが大切だと感じました。 知識活用の方法は? 今後は、単純平均だけに頼らず、円グラフやヒストグラム以外の表現方法も意識して活用していくとともに、学んだ知識を実務に取り入れ、部下や仲間と共有しながら継続的にアウトプットしていきたいと思います。 計算苦手を克服する? 数字や計算式に苦手意識があるため、今後は復習を重ね、参考図書を活用して学びを深めるとともに、グループワークや他の受講生の振り返りを参考にしながら、データの読み取り方を改善し、最終的には実践的な分析を通して意思決定につなげていきたいと思います。

戦略思考入門

戦略的選択で最大の成果を目指す

戦略的選択の重要性とは? 今週は「戦略的に選択する(捨てる)」というテーマについて学びました。これまで続けてきたことを「捨てる」のは誰しも避けがちですが、ビジネスにおいては重要な選択であると感じました。 捨てる際に考慮すべき要素は? 捨てる際に考慮すべき要素として、①時間当たりの利益率、②市場性、③ROI(投資対効果)に基づいて優先順位を決めることは合理的で、判断の基準として有効であると感じました。 判断基準の統一がなぜ重要? 捨てる際の留意点としては、以下の点を学びました: 1. 決断は一人で行うのではなく、複数人の視点を加えることが重要です。そのためには、判断基準を統一するための検討材料の準備が必要です。 2. 何かを捨てることで顧客の利便性が向上することがあります。これはトレードオフの考え方にリンクしており、コストリーダーシップか差別化戦略をとるかを判断し、資源配分をメリハリよく顧客ニーズに合わせて考える必要があると感じました。 3. 昔の惰性に流されないようにすることも大事です。組織改編を通じて多くの仕組みや手法を見直してきましたが、その際にメンバーから不満が出ることもありました。このため、なぜそれを実行する必要があるのかを視覚的に説明できる準備が求められます。 4. 餅は餅屋に任せるべきだと感じました。 学びをプロジェクトにどう活かす? この学びを踏まえ、以下のプロジェクトに活用できると考えています: 1. 組織の体制改編の検討: 現在の作業をフルタイムの従業員だけで行うのではなく、「捨てる」の意識を持ちたいです。惰性で実施している作業で廃止可能なものを見極め、アウトソーシングやベンダーに任せられる業務を選定する際には、作業時間、工数、および費用を考慮したいと思います。 2. 顧客満足度の向上: 製品の領域ごとに異なる課題に対してのアクションがあります。どのアクションを取るべきかをトレードオフの観点から判断し、効用を最大化するポイントを見つけたいと考えています。 組織改編の具体的ステップは? 具体的には、以下のステップを行いたいと思います: - 体制改編においては、FTE計算を基に組織体制案を作成し、新体制時の各作業の理想的な時間と工数を提案します。そして、不要な業務をリストアップする段階に進みます。 - 顧客満足度向上における課題については、必要なリソースを投入する課題とその解決策の優先順位を決定するための資料を作成し、議論を進めます。最終目標は顧客満足度の向上であり、解決策の優先順位決定においてトレードオフの観点から最も効用が高まる要因を検討することが課題です。

クリティカルシンキング入門

MECEな思考でプロジェクト運営が効率化された実例

物事の理解を深めるには? 物事や起きている事象を正しく理解するためには、様々な切り口で分解し、特徴的な傾向を見つけ出すことが重要だと実感しました。 MECEな切り口を考える意味は? まず、切り口はできるだけ多く考えることが大切です。物事の特徴を見つけ出すためには、様々な切り口での分解が必要です。これを効率良く進めるためには、MECEな切り口を考えることが重要です。もし切り口にモレやダブりがあると、要素同士が重複してしまい、分解しても特徴をうまく捉えられません。MECEであれば要素同士が独立しており、特徴を特定しやすくなります(原因解析であればうまく原因を特定できる)。 どのような切り口が効果的? MECEな切り口には、主に3パターンあります。「層別分解」、「変数分解」、そして「プロセス分解」です。全体を定義したうえで、これらを入口に考えていくと効率良くMECEな切り口を見つけられます。 分解結果をどう活用する? また、物事に影響を与えそうな原因の仮説を持ち、どのような単位で分解すると意味がありそうか考えることも重要です。目的に沿う切り口だけを仕分けて選別します。数値から特徴を見つけるには、分解した結果をグラフによって視覚化することが有効です。視覚化することで、全体を俯瞰し傾向を見つけやすくなり、効率化にも非常に有効です。 エンジニアに必要なスキルは? 数値を分析して物事を正しく捉えるという仕事は、開発業務に従事するエンジニアとして機会があります。今回の学習を踏まえて振り返ってみると、「変数分解」というアプローチを良く取っていたように感じます。この他にも「層別分解」や「プロセス分解」といったアプローチがあることを学んだので、これらのアプローチから新しい切り口を考えるのは有効だと思います。 プロジェクト運営での活かし方は? また、数値分析というわけではありませんが、物事をMECEな切り口で分解して捉えるということ自体が、自身の仕事で役立つと感じています。今では開発業務における数値分析という仕事は減り、プロジェクト運営の仕事が増えています。プロジェクトの方針・方向性を示し運営していくことが必要とされており、MECEな切り口で物事を捉えて説明するということは有効だと考えます。 実践すべきステップは何か? プロジェクトが担当する範囲を明確にし、その中でやるべきことをさらに分解して示していく必要があるので、MECEな切り口で分解していくことを意識したいと思います。MECEの3つのアプローチを入口に、切り口を出していくことを意識して実践していこうと思います。

リーダーシップ・キャリアビジョン入門

自分改革!挑戦と成長の軌跡

相手のやる気はどう引き出す? 仕事を依頼する際は、相手がやる気になれるよう、相手の関心やモチベーションについて事前に把握し、任せる仕事がどのように自身の成長や目標実現に役立つかを明確に伝えることが大切です。大きなプロジェクトの一部を依頼する場合でも、その作業が全体の中でどのような位置づけにあるのか、目的が何であるのか、そして仕事を通してどのようなスキルが身につくのかを説明し、意味付けをするよう努めます。また、仕事の成果がどのように活かされたかというフィードバックや、プロジェクト終了時の感謝や労いの言葉は、相手にとって大きな励みとなります。 任せた後はどう見守る? 仕事を任せた後は、責任感を持たせる一方で、丸投げにせず定期的に進捗や成果をフォローすることが求められます。問題が発生した際は、まず事態の収拾に努め、その後、なぜ問題が起こったのか、どのような行動が原因となったのかを多角的に分析します。この分析では「誰が」ではなく、「何が」「どのように」うまくいかなかったのかに着目し、具体的な改善策を一緒に考えることが重要です。振り返りを定期的に実施し、出来たこと・できなかったことの両面を本人自らの言葉で語ってもらい、次に活かせる気づきを得る機会とします。 リーダー経験はどう育つ? 部署MBOプロジェクトにおいては、4~8年目のスタッフにリーダー経験を積んでもらうことが目的です。グループリーダーが主体となり、計画の立案から実行、評価、修正までを自ら行うことで、計画を自分の問題として捉え、仕事に対する責任を持つよう促します。定期的な振り返りの場では、計画通りに進んでいるか、逸脱している部分はないかを本人の言葉で確認し、必要に応じてどのように修正すべきかを一緒に考えます。また、経験を積んだスタッフをサポートメンバーとして配置し、相互に振り返りを行うことで、全体の成長を支援しています。 他部署連携はどう築く? 一方、部署横断長期計画では、9年以上の経験を持つスタッフが他部署との協働プログラムに参加し、モチベーション向上を図っています。参加メンバーには、短い時間でも構わないので、他部署での経験や困難、工夫した点について語ってもらい、そこで感じたことや必要なサポートを共有してもらいます。これにより、相手が大切にしている考えや、どんな環境で力を発揮できるかを理解し、衛生要因や動機づけに基づいて、必要なインセンティブや支援の方法を考えます。普段の業務での様子や他者との関わり方を観察することで、一人ひとりの目標やモチベーションの源泉を見極め、次回以降の活動に活かせるようサポート体制を整えることも重要です。

マーケティング入門

マーケティングの魅力を探る:日常から学ぶ旅

マーケティングの基本とは? 「マーケティング」とは、「顧客に買ってもらえる仕組み」を考えることです。これは「自社の商品の魅力を顧客にきちんと伝えること」と「顧客が自社の商品に魅力を感じてもらうこと」の両方が成り立たなければなりません。 顧客訴求の工夫をどうする? 商品が顧客に選ばれない場合、商品そのものを変えたり価格を下げるのではなく、適切なターゲット顧客にシフトチェンジしたり、商品の魅せ方(商品名やパッケージなど)の工夫で顧客に訴求することが重要です。これがマーケティングの面白さです。 顧客の真のニーズは? また、マーケティングのポイントは、顧客の真のニーズ・欲求をしっかり見極めることです。それを身につけるためには、日常的に身の回りにある商品やサービスに注意を払う癖をつけることが大切です。 旅がもたらす学びとは? 「争いの多くが自分と異なるものへの理解不足や偏見、拒絶など、多様性がないことが原因で起こる」と言われています。そのため、「旅」を通じて異文化を理解・体験することは、争いの抑制に役立ちます。私は、平和産業である「旅」を通じて、世界という壮大な学びの場で多くの人が楽しみながら世界を知り、平和について考えるきっかけを創り続けたいと考えています。 資本主義と社会貢献を両立 現在、訪日旅行の営業に従事しており、オーバーツーリズムや地方創生、震災復興といった持続可能な観光に関する課題解決に取り組んでいます。しかし、会社としては社会貢献だけでなく、売上や送客などのビジネス成果も求められます。そのため、社会貢献とビジネスを両立させ、顧客にとって魅力的なツアー商品を企画する必要があります。それには、旅行業界の現状や課題を分析し、周囲を納得させて共に行動することが求められます。 私の学習方法とは? 日々の業務がイレギュラーが多いため、休みの日にまとめて学習しています。動画を視聴し全体の流れを把握した後、何度も繰り返し視聴しながら内容を自分なりに要約・まとめることで知識を定着させています。これは、自分に最も合った学習方法です。 GLOBIS学び放題の活用 以前からGLOBIS学び放題にも加入しており、期限が決められている方が集中して取り組めます。毎月視聴する動画を計画し、学んだ内容を自社や業界に当てはめるようにしています。日常から「この商品にはどのようなマーケティング戦略があるのか」を考える習慣を持ち続けています。 新たなスキルを学ぶために 現在はGLOBIS学び放題の継続に加え、データ・アナリティクスとアカウンティングのナノ単科を受講しています。

デザイン思考入門

会話から覗く隠れた顧客ニーズ

会話分析で隠れたニーズは? 定性分析について学んだ中で、CRMの管理者として、営業担当が顧客との面談で交わした会話内容をテキスト分析することで、隠れたニーズを発掘できるのではないかと考えました。一人ひとりの顧客に対し、営業担当自身がそのニーズに気づけるCRMシステムが理想です。しかし、そのシステムが効果を発揮するためには、まず営業担当のインタビュー能力を高め、会話内容を漏れなくテキストとして記録する仕組みが必要だと感じました。 研修でどう均てんする? インタビュー能力の均てん化は研修を通じて改善できると考え、記録については音声入力などのテクノロジーが一定の解決策を提供してくれるのではないかと思います。 セグメントの切り口は何? また、顧客のセグメンテーションは売上などの定量的な視点からだけでなく、定性分析を通じてこれまでとは異なる切り口で行える可能性があり、その各セグメントに対する最適な解決策を考えることができると感じました。このため、膨大なテキストデータのコーディング作業が非常に重要だと考え、AIの活用により効率的に対応できるのではないかと期待しています。 システム改善をどう確認する? システム導入については、すぐに実施するのは難しい状況ですが、リニューアルされた別のシステムが以前より使いやすくなったかどうかをチャットベースでのインタビューを通して確認する取り組みも行っています。ただし、単に「使いやすくなった」といった安易な回答に終始せず、具体的にどの点が改善され、どこに課題があるのかを掘り下げる質問をしていくことが重要だと考えています。たとえば、普段どのページにアクセスしているのか、そのページやデータへのアクセスが容易になったかを確認するなど、具体的な視点から質問を設定しています。 利用意義をどう問う? また、システム利用によって本来的に実現したいことに焦点を当てる必要性も感じました。問題点を問うのではなく、見たいデータへのアクセス手順が改善されたか、データがインサイトを得られるように可視化されているか、といった具体的な問いを設定するべきです。ざっくばらんに意見を募ると、後々コーディングして集約する際に混乱が生じる恐れがあります。 仮説構築の秘訣は何? 定量分析が仮説の検証を目的とするのに対し、定性分析は新たな仮説構築を目的とします。コーディングを通じてプロセスやフレームワークを構築することで、これまで想定しなかった要素も明らかになるでしょう。デザイン思考においては、仮説が広範囲になりすぎず、解決策ありきの課題設定を避けることが肝要だと感じました。

クリティカルシンキング入門

クリティカルシンキングで広がる視野と思考の深化

何に気づけたの? 出来ていたこと、出来ていなかったこと、修正が必要な点、新たに学んだことなどを通じ、多くの学びを得る機会となりました。クリティカルシンキングとは、フレームワークを活用して整理・分解・分析を行う思考技術と、クリティカルマインド、つまり「マインドセット」を指します。クリティカルの対象は自分自身や自分の思考に向けられるべきです。 何故問い続ける? 主張には根拠が欠かせません。それを明確かつ具体的にするために、問いかけ続ける姿勢が重要です。また、「今、答えを出すべき問い」が何であるかを明確に具体化したら、それを意識して押さえ続け、共有することが大切です。物事を俯瞰的かつ客観的に捉えるためには、「視点・視座・視野」の3つの視を意識し、思考を深める、広げる問いから始めることが必要です。さらに、「人の思考は誘導されやすい」という側面を考慮し、無意識の制約や偏りを避けるためにも、客観性とフラットな視点を意識することが求められます。 何を課題と見る? 特に仕事においては、この思考法が多様なシーンで活用できます。例えば、メールや資料作成、調査・分析、プロジェクトマネジメント、コミュニケーションなどにおいて役立ちます。顧客の課題解決においては、顧客の意図する課題や解決策が必ずしも根本的な解決に繋がるとは限りません。そのため、顧客の潜在ニーズを明らかにし、「何を課題と捉えるべきか?」から議論を始めることが重要です。Issueが明確化されたら、それを意識して押さえ続け、整理・分解・分析には学んだフレームワークを活用します。また、対策や解決策を多面的に洗い出し、それぞれの根拠を導き出すことが求められます。 伝え方はどう? 視覚的にわかりやすい資料作成も大切で、誰にでも理解しやすいように心がけます。説明のポイントは相手の立場に応じて柔軟に変えるべきです。 どう問いを考える? クリティカルシンキングに関しては、まだ完全に体得したとは言えませんが、意識的に行動できるようになってきました。例えば、注意が逸れている際に即座に対応するのではなく、一歩引いて冷静に問いを考えることを心掛けています。反復トレーニングを通じて、効率的かつ無駄なく活用できるレベルに達するために、意識を維持することが重要です。 どう知識を更新? 加えて、知的好奇心を刺激するために、積極的に読書やオンライントレーニングに取り組み、多くの知識を吸収しています。「インプット⇒アウトプット⇒フィードバック⇒振り返り」のプロセスを繰り返し、知識やスキルの更新を続けたいと考えています。

「考える」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right