データ・アナリティクス入門

悩みを力に変える仮説の魔法

どんな仮説を作る? 普段は問題意識や論点の着目はできるものの、その先の進め方に悩むことがあり、課題から仮説につなげるのに苦手意識を抱いていました。しかし、3Cや4Pを活用することで仮説の立て方を理解でき、今後はより具体性のある仮説を構築できるよう努めたいと感じています。 新たなデータはどう? また、これまでは既存のデータだけで答えを導く方法に頼っていたため、仮説の裏付けとして新たなデータを収集する発想がなかったことに気づかされました。今後は情報が偏らないよう注意しながら、必要なデータを積極的に取りにいく姿勢を身につけたいと思います。 どう説得力を出す? 売上に関しても、なぜこのような結果になったのか説明が十分でなかったため、まずは結論を支える仮説を立て、その裏付けとなるデータを取りに行くことで、より説得力のある説明ができると感じました。普段から問題意識を持つことで仮説の具体性が増し、分析の視野が広がると実感しています。

クリティカルシンキング入門

問いと理由で進む新たな未来

誰の視点を意識する? WEEK1の振り返りを通じて、今後の自分のアクションにつながる目標を整理しました。これまで、考えやすい部分からまず「解決策」を検討してしまう傾向がありましたが、本来は「誰の視点で」「何のために」「どんな問いを立てるか」というプロセスを意識することが大切だと実感しています。今後は、解決策に至った理由を振り返る癖をつけ、一人では気づかない点も見逃さないよう努めます。 なぜ数値に注目する? また、毎週のレポート作成では、KPIの変化に対して「なぜ増えた/減ったのか」という仮説を3つ以上挙げることで、データに基づいた分析を深めることを目指します。さらに、会議で議論が停滞した場合は、「今日決めるべきこと」を整理して提示することで、議論を前に進める工夫を行います。 どう説明を伝える? 提案資料を作成する際には、必ず「施策→狙い→期待成果」の流れを明確にし、読み手にわかりやすい形で説明することを心がけています。

データ・アナリティクス入門

問題解決の新たな発見と実践技巧

問題の特定方法には何がある? 問題の特定方法について、さまざまな考え方があることを学びました。特に、5W1Hを駆使して繰り返し考察を行うことで、より意義のある分析にたどり着けることがわかりました。また、MECE(Mutually Exclusive, Collectively Exhaustive)を意識することで、分析の精度が高まると理解しました。 定量的でない問題にどう対応する? この方法は、特に定量的でない問題やトラブルの対応に役立ちそうです。さまざまなシステムを活用しているため、どこに問題があるかを素早く把握するために、MECEやロジックツリーを活用して解決を図りたいと考えています。 ロジックツリーの活用方法を説明 具体的には、ロジックツリーをWordやExcelなどで作成し、問題を視覚的に整理することを目指しています。この方法により、直感的には気づかなかった問題や課題の本質を見つけやすくなると期待しています。

データ・アナリティクス入門

多角的視野で見るデータの魅力

仮説はどう広げる? 他部署の課題解決におけるデータ分析では、検討すべき切り口が多数存在することを意識し、決めつけることなく幅広い仮説を立てることが重要です。データを俯瞰的に捉え、各特性に合わせた代表値を用いながら、偏らない分析を心がけています。 比較軸はどう選ぶ? また、データ分析は比較を軸に、代表値とばらつきを見ることが基本です。集めた関連データから正確な傾向を把握し、単一の視点に陥らないよう、複数の見方を試みています。 分かりやすく伝える? さらに、分析結果を相手に伝えるためには、理解しやすい可視化が欠かせません。それぞれの人が異なる意見や感じ方を持つことから、相手の立場を尊重しながら意見を交えた説明を心がけています。 経験は視野を広げる? 今まで参加したグループワークや講義での交流を通じ、データの見方や可視化の手法は多様であると実感しました。その経験をもとに、柔軟な視点で課題に取り組むことができています。

データ・アナリティクス入門

ABテストで広がる検討の可能性

ABテストの活用法は? 原因を探るツールとしてご紹介いただいたABテストについて、既に知識はあったものの、問題解決プロセスにおける位置づけと合わせて理解できたことで、具体的な利用シーンがイメージしやすくなりました。体系的に整理することは、自身で活用する際や他者に説明する際にも有効だと感じています。 業務検討テンプレートは? 業務に取り入れるためには、具体的な状況を想定し、各パターンごとに検討方法のテンプレートを構築しておく必要があると実感しました。こうしたテンプレートを整備することで、検討に着手するスピードが速まり、業務の効率化にもつながると考えています。 どの要素が影響する? たとえば、よくあるデータ分析の依頼を想定し、受注額に影響を与える要素を洗い出して、その関連性を検証するパターンをいくつか作成しようと思います。これにより、関係性の強い要素から受注額を予測する、といった検討がよりスムーズに進むと期待しています。

アカウンティング入門

数字で読み解く経営の裏側

P/L構成の意味は? P/Lの構成については理解していたものの、自社のP/Lを単に作成するだけでは、営業損益、経常損益、当期純利益それぞれがどのような理由でその数値になっているのか、十分に考察できていなかったことに気づきました。そこで、同業他社や他業種との比較、比率や過去の推移を分析することで、各損益数値が示す背景や原因、さらには対策まで具体的に検討できる力を身に付けたいと考えています。 計画策定はどう進める? また、経営陣や投資家に説明するための事業計画を策定する際には、単に「この計画になりました」と報告するのではなく、望むべき将来像を実現するためにどのようなマイルストーンを設定し、それに向けてどのような行動を取るべきかという視点を持ちたいと思います。 数値の背景は何? さらに、社内の研究部門や営業部門とのヒアリングを通して、予測される数値や決算数値の背景にある原因をしっかりと把握することも重要だと考えています。

クリティカルシンキング入門

イシュー共有で広がる学びの輪

イシュー分析の意味は? Week 1の学びを振り返る中で、イシューの分析や分かりやすい説明の大切さを再確認することができました。議論を進める際にイシューの共有が重要であるという点を改めて認識でき、良い振り返りとなりました。 部下と意思決定の秘訣は? プロジェクトの進行において部下と共に意思決定を行う場面も多く、どこにイシューがあるのかを明確にし、必要な分析が実施されているかを意識することが相手の説明の正確さを判断する上で役立つと感じました。自分が説明を行う際も、相手の理解を促すためにどのような工夫ができるかを学ぶことができました。 改善へ向けた次の一歩は? 今後は、自分が実践した説明や分析について振り返り、Week 1で学んだ観点からうまくいかなかった点を整理して改善を図っていきたいと思います。また、一人だけの視点に偏らないよう、同じ講義を受講している仲間と定期的に意見交換を行い、より良い成果を目指していきます。

クリティカルシンキング入門

言いたいことは柱にあり

文章の柱は? 私の日本語表現において、一文が長くなりがちなことや、言いたい主軸が定まっていなかったため、結果的に文字数が多くなってしまった点に気づきました。この経験から、文章を書く際には、明確な「柱」を立てることの重要性を再認識しました。 会議の見える化は? リモート会議では、相手の顔や反応が見えないため、会話が空中戦のようになってしまいがちです。そのため、打ち合わせの際に会話の内容をロジックツリーを意識して整理し、内容の見える化に努めています。こうすることで、会議で伝えたかったポイントが明確に把握できるようになりました。 指示の伝え方は? さらに、部下に対する指示事項を伝える際にも、指示を実施する理由、効果、経緯など、「柱」を意識して説明するようにしています。自分なりにツールをテンプレート化することで、指示が明確に伝わる工夫を行い、また、部下からのフィードバックを受ける際にも業務全体を意識して確認しています。

クリティカルシンキング入門

分かりやすさで魅せる文章術

論理伝達はどうする? ナノ単科で学んだ内容は、ビジネス現場で求められる論理的な説明方法や伝え方を身につける大きな糧となりました。講座では、伝えたい目的に応じて複数の理由を明快に提示することや、主語と述語を明確にすることで説得力のある文章作成を実践しました。 説明の流れはどうなる? また、説明する際の論理の構造や流れについて、理由と根拠がしっかりと連携している点が強調されており、読み手にとって分かりやすい順序で情報が整理されていると感じました。上司やクライアントに対しても、これらのポイントを意識した説明が効果的であるという具体的な事例とともに学ぶことができました。 簡潔な表現はどう磨く? さらに、文章を短く端的に書く技法や表現のバリエーションを工夫することの大切さも実感できました。全体的に内容が具体的でありながら、無駄を省いた簡潔な表現が自然な日本語で伝わるようになっており、実務的な説明力の向上につながりました。

クリティカルシンキング入門

グラフで魅せる!分かりやすい資料作り

スライド説明はどうすべき? これまでの経験から、スライド作成の基礎が十分でなかったために、誤解を招く表現があったと実感しています。特に経営層への説明においては、数多くのデータを細かく伝えるのではなく、グラフや表を用いて視覚的に直感的な理解を促すことが求められます。今回学んだ内容を活かし、グラフにタイトルや単位、軸の原点を明示するなど、より伝わりやすい資料作りを心がけたいと感じました。 抽象と具体、どう調整? 一方で、シンプルな表現が過ぎると、具体性を欠き分かりにくくなる恐れもあるため、抽象と具体のバランスが重要です。今後は、WEEK4で学んだことをしっかりと振り返りながら、情報を整理し順序立てたスライド作成に努めます。また、社内での提案活動を通じて実践の機会を増やし、より多くの人に分かりやすいプレゼンテーションを提供できるように努めるとともに、若手メンバーにも効果的なスライド作成の方法を伝えていきたいと思います。

データ・アナリティクス入門

実務で活かす!徹底復習のススメ

なぜ復習が大切? 学んだ内容は、1週間前のものはすぐに思い出せる一方、1か月前のことはすぐに再現できないと実感しました。このことから、インプット、復習、そしてアウトプットの重要性を改めて学び、机上の学習にとどまらず、実務に活かす目的を持って本講座全体を自己復習しようと考えました。 どこから手を付ける? また、データビジネスやロジカルシンキングが未経験のメンバーには、いきなりドメインの詳細な説明をするよりも、入りやすい内容から始めるのが効果的であると感じました。具体的には、比較を用いた分析や、データ分析のプロセス、問題解決のステップなどが、そのヒントになり得ると考えています。4月以降の職務管掌は未定ながら、少なからず人材育成に関わる予定です。そのため、まずは本講座全体を自身で復習し、業務に必要な知見をピックアップしておくとともに、必要に応じてアウトプットすることで、自らの復習と組織全体の底上げを図りたいと思います。

データ・アナリティクス入門

データでつかむ共感と納得

データ分析の意義とは? 「分析とは比較なり」と分かっていても、その意味を他の人に伝えるのは別の課題です。結果的に、データ分析の意味とは何を目的にし、どこに活かすかであると改めて実感しました。また、適切なデータ選びと結果の見せ方も理解に大きく影響を与えることを痛感しました。 分析結果をどう伝える? これまでのデータ分析は、自分が次の戦略を考えるために、自分が理解することを前提にしていました。しかし、考えたプランが良くても、納得や共感を得られなければ意味がありません。多くの人に理解される分析を心掛けるべきであると感じています。 経営戦略に重要なデータ選び データ分析のプロセスを含めて、しっかりと説明できることが重要な前提です。正しい経営戦略を考えるためには、どのデータを重視し、補足できるデータを選ぶかが鍵であり、会社の進むべき方向性を理解してもらうために、方向性を一致させる納得感の高いアウトプットを意識します。

「説明」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right