デザイン思考入門

観察と共感でひらく新発見

調査ログの見直しは? 今週、育児期間中の30~40代を対象に実施した過去のインタビュー調査ログを見直す作業を行いました。コーディングを意識しながら作業する中で、改めて一次データの重要性を実感しました。 抽出視点の違いは? ログから課題やニーズにつながる事象や行動を抽出する作業は、人の目に依存するため、抽出の視点が人によって異なりやすいと感じました。動画内でも経験が強調されていましたが、バイアスが働くと必要な情報に気付かなくなる可能性があるため、情報を絞りすぎると大切な観点を見落としてしまいそうだと危惧しました。 共感の重要性は? デザイン思考の最初のステップである「共感」では、ユーザーの見えない課題やニーズを発見するために、観察、体験、インタビューを繰り返すことが重要です。インタビューでは、観察で気になった行動の背景を心理面から深掘りし、共感を得られるように課題やニーズを言語化します。こうして得た情報をテキスト化し、コーディング分析を行うことで、単なる観察だけでは浮かび上がらない本質的な課題や行動を明らかにすることができます。 行動の理由を探る? 実際、観察や体験で注目した行動をインタビューで詳しく聞くことで、ユーザーが無意識に行っている当たり前の行動の理由を解明するプロセスの重要性を実感しました。課題を抽出する際は、互いの思い込みや認識の差が生じやすいため、情報共有を通じて共通認識を合わせることが求められます。しかし、立場や利害関係が異なる中で何を重視すべきかを調整するのは容易ではなく、うまく進む場合とそうでない場合があると感じました。 定性調査の有用性は? WEEK-3で学んだ定性調査は、新しい領域や馴染みのない状況で仮説を構築する際に有効な手法だと感じています。定量データだけでは掴めないユーザーの姿勢や心理を探るのに、インタビュー、フィールドリサーチ、ログ(日記)などの手法が効果的です。実際、観察を通じてユーザーが意識していない行動や癖から気付かないニーズや課題にアプローチできることもあります。 仮説構築の進め方は? 定性調査では、まずインタビューやフィールド調査で得た情報を整理し、要点となる事象や課題を抽出します。その後、抽出した要素をカテゴリー分けして情報を圧縮し、最小限の要素にまとめた上で、フレームワークやプロセスの形に図式化・構造化することで仮説モデルを作成します。 ヒアリングの工夫ポイントは? また、インタビューの際にヒアリング項目を整理したシートを事前に作成し、記入してもらってから話を聞く方法も有効だと感じました。ただし、記入式では重要な点が十分に言語化されない場合があるため、まずは日常の業務や業務フローなど現状を把握することから始める工夫が必要です。ヒアリングが雑談になり、課題に焦点が定まらなくなる場合は、ジョブ理論を参考にするのも一案です。実際、グループワークでフォームの改善に取り組んだ参加者の話では、ユーザーが入力の手間を感じないようにするため、従来の枠にとらわれない解決策が模索され、その柔軟な発想が印象的でした。

デザイン思考入門

共感が生む実践×革新の学び

どうすれば現場で実践? デザイン思考の学びを教育現場、特に高専で実践する方法として、まずは学生が抱える問題への理解と新しいアイデアの創出が挙げられます。たとえば、数学の応用問題に取り組む際、学生が理論と実践を結びつけることに苦戦する現状を背景に、教員自身が同じ立場で問題に取り組み、どこでつまずくかを体験的に把握する方法が有効です。また、抽象的な数式を物理モデルに置き換えたり、数学と専門科目を組み合わせたプロジェクトを設計したり、ゲーム要素を取り入れるなど、SCAMPER法といった手法を活用することで、より具体的な学びに結びつけられています。 学科横断型で協働は可能? さらに、学科横断型のプロジェクト設計も大変興味深いアプローチです。電気、情報、機械といった異なる分野の知見が融合するプロジェクトは、学生同士の協働を促進し、実社会の課題に対する解決策を見出すための実践的な学習環境を整えます。こうしたプロジェクトでは、地域企業や地域社会との連携を通じ、学生は自らの専門分野だけでなく、他分野の知識や技術にも触れる機会が増え、相乗効果が大いに発揮されます。 教材連携をどう活かす? また、教材開発の現場では、地元企業が直面する実際の課題をケーススタディとして教材化する取り組みや、研究機関と連携して最新技術を取り入れることで、学生がより実践的な学びを得られる工夫が施されています。こうした連携作業は、学生にとって技術や理論だけでなく、その背景にある現実の問題意識を養う上で、大きな意義を持ちます。 共感で何が見える? 実践の中で感じた主な気づきとしては、まず共感的なアプローチの重要性が挙げられます。学生と同じ目線で問題に取り組むことにより、従来の教科書では見えてこなかった本質的な困難を明確にすることができました。また、SCAMPERなど多角的な思考フレームワークを活用することで、従来の講義形式では思いつかない新たな教授法が生まれ、特に抽象的な概念を具体的な事例に置き換えるアプローチは、学生の理解度向上に大きく寄与しました。 連携が生む視点は? さらに、異分野連携によるプロジェクト活動が、学生の専門性と協働スキルの両方を向上させるとともに、企業や地域との連携により双方に新しい視点がもたらされることも大きな成果です。加えて、大規模な改革よりも、学生からのフィードバックを積極的に取り入れるなど、小さな改善を積み重ねることで、持続可能な学びの環境を創出できるという実感も得られました。 学びの成果は何? 今回の学びを整理すると、まずはデザイン思考における共感と課題定義の重要性が再確認され、実際の体験を通じて「誰が・どのような状況で・何に困っているのか」を具体化する効果が実感されました。次に、創造的な発想のための多様なアプローチ、異分野連携による新しい解決策の模索、そして教育現場への応用可能性が明らかになりました。最後に、実践を通じて体験することの重要性や、使い手の視点が生む創造的解決策、そして異なる視点の融合によるイノベーションの価値を深く理解するに至りました。

データ・アナリティクス入門

数字が紡ぐ学びの物語

データ活用はどう考える? WEEK3では、データを単なる数字としてではなく、「意味のある情報」として活用するための基本的な考え方や手法について学びました。まず、データ分析の際には、数字に集約して捉える、目で見て確認する、数式で関係性を読み取るという三つの視点が重要だと理解しました。たとえば、数値の代表値である平均値を用い、分布のばらつきを標準偏差で把握することで、全体の傾向をより具体的に捉えることが可能になります。標準偏差が大きい場合はデータのばらつきが大きく、逆に小さい場合は値が一定の範囲にまとまっていると判断できます。これによって、単なる「平均気温」といった情報でも、過去のデータと比較することで、その年の気温の位置付けを明確にすることができます。 ビジュアル化は有効? さらに、ヒストグラムなどを用いたビジュアル化は、視覚的にデータの分布や外れ値を確認できるため、特定の年齢層の傾向や想定とのずれを一目で把握可能にします。こうしたプロセスは、単にデータを集約するだけでなく、見込み客の把握や最適な施策構築といった、戦略的な意思決定を支える重要なツールとなると感じました。 受講者像の把握は? この考え方を、受講者促進活動に当てはめると、まずは代表値や分布を用いて受講者の像を明確にし、年齢や職業、居住地域、受講目的などの項目ごとに「どの層に集中しているか」や「どの程度幅広い対象にリーチしているのか」を分析する必要があります。たとえば、平均値から中心となる層を把握し、標準偏差で広がりを捉えることで「特定の年代に偏っているのか」「幅広い年代に支持があるのか」が明らかになります。 グラフで見える傾向は? また、ヒストグラムを活用することで、受講目的やニーズの傾向を視覚的に判断でき、たとえば広告文面の最適化や広報素材のデザイン、ターゲット層の絞り込みに役立ちます。同様に、地域ごとのデータもマッピングして、申込数や反応率の地域差を明確にし、重点的な営業エリアの選定につなげることができます。さらに、各施策の反応率を数値化し、平均値と標準偏差を基に比較することで、PDCAサイクルを効率的に回し、より効果的な改善策が講じられると感じました。 具体策はどう実行? 具体的なアクションプランとしては、まず過去数年間の受講者リストから「年齢」「性別」「職業」「居住地」「受講目的」などをExcelに整理し、各項目の平均値や最頻値、標準偏差を算出してデータの集約と構造化を図ります。次に、ヒストグラムや円グラフを用いて年齢や職業、地域ごとの分布を可視化し、そこから抜け落ちているターゲット層や成功しているエリアを確認します。そして、特定のターゲット層を仮説として立て、その層に合わせた広報や導線の設計を行います。加えて、各施策の反応率を記録し、基準となる数値を通じて比較分析を行い、最後に数値とビジュアル化されたデータをもとに定期的な振り返りを実施することで、感覚ではなく具体的な数字に基づいた意思決定を徹底していくことが求められます。

デザイン思考入門

アイデアと共感で未来を創る

デザイン思考を感じた? 今回の体験を通して、デザイン思考のプロセスとユーザー中心の視点の重要性を強く実感しました。まず、プロトタイプとしてアイデアを具体化することで、取り組む課題が明確になり、改善点が浮かび上がることを体感しました。紙や身近な材料を用いて検証するだけでも十分な効果が得られると感じました。 ユーザーの本音は? また、ユーザー視点の大切さも改めて認識しました。フィードバックを受ける中で、自分自身の考えとユーザーニーズとのずれに気付かされ、ユーザーの意見を積極的に取り入れることが、製品の改善には欠かせないと理解しました。さらに、さまざまな意見から得られる新たなアイデアや改善点の価値、そして建設的な批判を受け入れることで、製品の質が向上することも学びました。 チームは連携できた? チームワークの面では、それぞれの得意分野を活かし協力することの重要性が浮き彫りになりました。活発な意見交換を通じて、チーム全体の創造性が高まることを実感するとともに、プレゼンテーションのスキルによって、準備した資料や発表がアイデアの効果的な伝達に大きく寄与することも理解できました。 営業で共感は? 日々の営業活動においても、これらの学びは大いに活用できると感じています。デザイン思考の「共感」を通じて顧客の真のニーズを深く把握することは、単なる製品提案ではなく、顧客の課題解決に直結するソリューションの提案につながります。例えば、プロトタイプを用い具体的な提案内容を示すことで、顧客から早期にフィードバックを得やすくなり、その結果、提案内容の改善が迅速に行えるという点は、大いに意義深いと実感しています。 対話で信頼築けた? さらに、顧客との対話を重ねることで、双方の理解が深まり信頼関係が構築されることが、円滑なコミュニケーションに寄与していると感じました。今後は、以下の行動を継続することで、顧客満足度を高め、より良いソリューションを提供できる技術営業を目指していきたいと考えています。 顧客理解は深まる? まず、顧客理解の深化のため、積極的なヒアリングを行い、事前に業界や企業の情報を調べるなど、共通の言語で会話できるよう準備します。また、可能であれば現場を訪問し、実際の業務フローや潜在的な課題を観察し、顧客の声を定期的に収集することも心がけます。 提案は検証できた? 次に、提案の具体化と検証については、デモや試作品、提案資料を活用することで、顧客の課題解決につながるシナリオを提示します。さらに、提案段階から早期にフィードバックを収集し、その内容をもとに提案内容を柔軟に修正していくとともに、顧客との共創を通じて最適なソリューションを追求していきます。 説明で分かりやすい? 最後に、コミュニケーションの質向上を目指し、顧客の話に傾聴と共感で応え、専門用語を避けた分かりやすい言葉や視覚資料を用いた説明を行うとともに、定期的な情報提供やフォローアップにより、継続的な関係構築に努めます。

データ・アナリティクス入門

データ駆動!仮説から実践へ

A/Bテストはなぜ? A/Bテストの考え方が特に印象に残りました。異なる2つの施策を比較して、どちらが効果的かを見極める手法を学ぶことで、広告やプロモーションの改善につなげるアプローチを理解しました。実際、SNSでのプロモーションやデザインの検証など、具体的なマーケティング活動にどう応用できるかを実感しました。 仮説はどう考える? また、「こうではないか?」という仮説を立て、それを確かめるために必要なデータを収集して検証・改善するプロセスを通し、結果一喜一憂せずに仮説→検証→改善というサイクルの重要性を体験しました。日常の課題解決にも応用できる実践的な学びとなりました。 分析の視点は何? さらに、データ分析においては「どこで起きているのか(Where)」「なぜ起きているのか(Why)」「どのように起きているのか(How)」という3つの視点で自分の身の回りのデータを分析する練習が非常に効果的であると感じました。これにより、実際の現場に近い形で分析力を向上させることができました。 知識はどう活かす? そして、講師の「使われない知識はどんどん捨てられていく」という言葉が強く心に残りました。知識は使ってこそ意味があるという考え方から、学んだことを実務や日常に活かす姿勢の大切さを再認識し、今後も積極的にアウトプットしていきたいと感じました。 講座の展開はどう? それに加えて、講師養成講座の受講者促進に対しては、具体的な展開案も印象的でした。まず、仮説に基づき、ターゲット層に合わせたプロモーション戦略を設計することが提案されました。例として、若年層の反応を狙い、「講師」というワードが持つ堅苦しさを和らげ、“キャリアアップ”や“副業”といった切り口から魅力を伝える文言を用意する案が挙げられています。 WEB広告の効果は? さらに、Web広告やSNS投稿を使ったA/Bテストによって、異なるバナー画像や訴求文、ターゲット年齢に対する反応を計測し、効果的な組み合わせを選定する方法も紹介されています。各媒体における反応を、「どこで(Where)」「どんな表現が刺さったか(Why)」「受講に至る導線の状況(How)」という視点で分析する点も具体的でした。 受講者の声は? また、受講者アンケートを活用して、学んだ内容が現場で役立っているかどうかを評価し、講座内容や演習方法の改善につなげるという姿勢は、実践的な学びをより一層深めるものと感じました。 今後の行動は? 最後に、今後の具体的な行動計画として、Phase 1からPhase 5までの段階的な取り組みが示されました。まずはターゲットの再設定と仮説の立案、次にテストコンテンツの作成とA/Bテストの実施、さらにデータ分析と受講者アンケートを通じた改善、講座内容のブラッシュアップ、そして成功事例をもとに次回募集に向けた本格展開へと進める構想です。これらの計画を通じ、受講促進に向けた施策を体系的に実行していく意欲が感じられました。

データ・アナリティクス入門

データ分析で見つける新たな発見の旅

データ分析における比較の大切さとは? 今週の学習を通じて、データ分析における「比較」の重要性を再認識しました。「分析は比較なり」という表現が示すように、何か基準となるものと比較することによって初めて、変化や差異を見つけることができます。そして、その変化がなぜ起きたのか、差異が生じた原因は何なのかを検証することが、データ分析の核心と言えるでしょう。しかし、漠然とデータを比較するだけでは有意義な分析は不可能です。「何のために分析するのか?」という目的を明確にすることが、データ分析の出発点となります。 明確な目的が仮説を生む? 目的が明確になれば、自然と仮説も立てやすくなります。例えば、「収入を向上させたい」という目的なら、「初診患者の獲得が収入増に寄与するのではないか」といった仮説が考えられます。このように、目的を定め、仮説を立てた上で、それを検証するためにデータを比較・分析していくプロセスが、効果的な意思決定に結びつくことを学びました。 日常業務へのデータ活用は可能か? また、今週身につけた知識は日常業務にも直結すると感じています。特に、来院患者の属性や疾病傾向、売上などのデータは、毎月作成する月次報告に役立ちそうです。これらのデータを活用することで、科別に詳細な分析が可能になり、変化を明確に把握できます。例えば、ある科で患者数が先月より大幅に増えた場合、その原因を詳しく調査することで、効果的な集患対策を講じることができます。また、売上が伸び悩む科については、患者の属性や傾向を検討することで改善策を見つける手がかりになります。さらに、過去のデータからトレンドを分析することも重要で、一定のパターンを把握することで、未来の需要を予測し、適切な経営戦略を策定できます。 行動計画はどのように進める? 今後の行動計画として、まず明確な目的と課題を確認・設定することから始めます。これはデータ分析の方向性を決める大切な部分で、ここが曖昧だと分析が迷走してしまいがちなので、慎重に検討したいと思います。次に、目的達成に必要な要素(データ)を見極め、その収集と加工に努めます。必要なデータをどこから収集し、どのように加工すれば効果的に分析できるのかを考え、具体的な計画を立てて実行します。 結果をどう効果的に共有する? データがまとまった段階で、自分なりの課題解決に向けた仮説を立てます。この仮説は、データ分析の結果を解釈し、具体的な行動につなげるための指針となります。これらの行動計画を実行する際には、常に「何のために分析するのか」という目的を意識し続けることが大切です。データ分析はあくまで手段であり、目的は課題解決や意思決定の支援であることを忘れないようにしたいと思います。 また、データ分析が自己満足で終わらないよう、他者に理解され活用される形で結果を提供することも重要です。そのためには、視覚的情報を用いて分かりやすい資料を作成する努力を続けていきます。

データ・アナリティクス入門

データに秘めた学びのヒント

数値とグラフの違いは? 今週は、データ比較のアプローチとして、数値に集約する方法とグラフ化して視覚的に捉える方法の両面から学びました。数値に集約する際は、代表値として単純平均を用いることが多いですが、外れ値が混ざると平均値が影響を受けやすいため、その場合は標準偏差を活用してデータのバラつきを確認します。ヒストグラムを用いることで、グラフから傾向を読み取り、背景を推察する仮説思考の大切さも実感しました。 データばらつきの見方は? 標準偏差は分散の平方根であり、自然現象のバラつきが正規分布(釣鐘型)に従う場合、2SDルールで求めることができます。ただし、ピークが複数あるヒストグラムでは正規分布とならない点には注意が必要です。 成長率の計算は? また、成長率などの変化を計算する場合は、各年度の成長率を掛け合わせた数値のn乗根で算出される幾何平均を用います。複数のデータの平均を求める際、外れ値の影響がある場合は単純平均ではなく中央値を用いる方法も取り入れています。 散布図の意義は? 要素が2つの場合、散布図を用いて数値の関係性を視覚化し、相関係数によりその関係を数値化します。相関関係を直線で表現するために単回帰分析を適用し、相関係数はR、決定係数はR²として示されます。決定係数は、散らばりの何%が横軸の要因で説明できるかを示しますが、相関が必ずしも因果関係を意味しないことを改めて認識しました。 フェルミ推定を使う? さらに、データ収集の前に成果をもたらす要因を構造化するため、フェルミ推定を活用して方程式を作るモデル化にも取り組みました。フェルミ推定は、売上を上げる施策の検討にも用いられ、多角的に捉えてアクションに結びつける手法として有用だと感じました。たとえば、薬局の売上伸長を検討する際に売上を分解し、複数の施策を検討することで、利益の方程式と組み合わせてより分かりやすい説明が可能になると感じています。 相関と因果の違いは? また、気温とビールの相関性の事例を通して、これまで取り入れてこなかった相関性の視点を業務に役立てたいと考えました。具体的には、患者の平均待ち時間と減少率、在庫品目数と医薬品廃棄率、管理者への研修時間と理解度テストの結果など、さまざまな原因と結果の関係を散布図にして検証することで、業務改善につなげる手法を学びました。なお、常に相関と因果は一致しない点を念頭に置いて取り扱う必要があります。 適切なグラフ選びは? 最後に、これまでなんとなく選んでいた棒グラフや折れ線グラフに代えて、根拠を持って適切なグラフや散布図を選択する重要性を再認識しました。売上アップのための各施策を列挙し、売上と施策の関係を散布図で表すとともに、グラフの縦軸のメモリを工夫して読みやすさを追求します。その上で、相関係数や決定係数を算出し、どの施策が最も効果的だったかを分析し、上司や部下、部内と情報を共有していきたいと考えています。

戦略思考入門

航空業界の革新を目指すコンタクトセンター戦略!

事業戦略における重要ポイントは? 航空業界のコンタクトセンター運営における事業戦略・企画において意識すべきポイントは以下の5つです。 まず、3C分析を活用します。市場・顧客(カスタマー)の観点からは、顧客ニーズや市場動向を詳細に把握し、サービスに反映させることが重要です。競合(コンペティター)の観点からは、競合他社の運営方法やサービス内容を調査し、自社の強みと弱みを比較して、成功事例や失敗事例を参考にします。自社(カンパニー)の観点からは、内部リソース(人材、技術、プロセス)を評価し、強みを活かした戦略を立案します。 SWOT分析をどう活かす? 次に、SWOT分析の活用です。強み(Strengths)としては、最新技術の導入やブランド力を活かしたサービス提供が挙げられます。一方、弱み(Weaknesses)としては、リソース不足やプロセスの非効率性の改善が必要です。機会(Opportunities)には、AIやビッグデータ解析などの新技術を活用した新しい市場や顧客層へのアプローチがあります。脅威(Threats)には、競合の進出や規制の変化に対応するための準備が含まれます。 顧客対応プロセスの最適化は? 3つ目のポイントはバリューチェーン分析の活用です。顧客対応プロセスの効率化、スタッフのトレーニング充実、技術サポートの強化など、各機能を分析し、そのコストを詳細に把握することで無駄を削減し、高い付加価値を生む部分にリソースを集中させます。 顧客視点をどう強化する? 4つ目は顧客視点の強化です。顧客満足度の向上のために、顧客のフィードバックを積極的に収集し、サービス改善に活かします。また、顧客データを活用して個々のニーズに応じたパーソナライズドサービスを提供します。 継続的な改善を実現するには? 最後に、継続的な改善です。PDCAサイクル(Plan、Do、Check、Act)を実践し、継続的にサービスを改善します。また、業界のベストプラクティスを取り入れることで、自社の運営に反映します。 これらのポイントを意識し、3C分析、SWOT分析、バリューチェーン分析といったフレームワークを活用し体系的に情報を整理して戦略を立案します。顧客視点を重視し、継続的な改善を行うことで、コンタクトセンターの運営を効果的に進めることができると考えました。 実行に移すためには、まず3C分析を行い、顧客ニーズ、競合他社、自社のリソースを詳細に把握します。次に、SWOT分析を用いて強み、弱み、機会、脅威を明確にし、戦略を立案します。さらに、バリューチェーン分析で各機能の効率化とコスト削減を図り、顧客視点を強化するためにフィードバック収集とパーソナライズドサービスを実施します。最後に、PDCAサイクルを回し、継続的な改善を行い、業界のベストプラクティスを取り入れることで、効果的なコンタクトセンター運営を実現させることができると考えました。

データ・アナリティクス入門

小さな仮説、大きな変革

データ分析の効果は? 今週の学びでは、データ分析を活用することで、感覚的な判断から離れ、客観的な事実に基づいた意思決定が可能になると実感しました。特に、仮説を立てた上でデータを収集・検証するA/Bテストや、アンケートの結果を定量的に処理しグラフや数字で確認する技術は、マーケティングやサービス改善に直結する有効な手段であると理解しています。今後は、業務後のアンケート集計やSNS施策において、小規模な仮説検証を取り入れ、データを活かした改善活動を進める必要性を感じました。数字で成果を語る習慣や改善に向けた意識を日々実践し、継続的な取り組みが未来を変える力になると学んだ一週間でした。 講座受講促進の秘訣は? これまでの学びを自分の仕事にあてはめると、講師養成講座受講促進の例として以下のように整理できます。まず、仮説を立てる段階では、「40代女性は講座に興味を持っているものの、日程や価格が申し込みの障壁になっているのではないか」という仮説を設定します。次に、過去の資料請求や問い合わせ、説明会参加者の属性データ、SNS広告やランディングページ(LP)のクリック数、コンバージョン率といったデジタルデータを収集し、申込者と非申込者の属性やアクセスから申し込みまでの動線の違いをグラフで見える化します。年代別、職業別、流入経路別にヒートマップや棒グラフで傾向を把握した上で、例えばLPに掲載するキャッチコピーや導線を2パターン用意してA/Bテストを実施し、効果の高いパターンを検証します。最後に、データの変化を定期的に追い、仮説の修正や新たな施策の追加を繰り返すことで、改善活動を継続していきます。 問題解決の手順は? また、ライブ授業で紹介された問題解決のステップ「What, Where, Why, How」に基づく行動計画も立てました。まず【What】として、講師養成講座の説明会参加者や資料請求者数に対して、受講申込みへの転換率の低さや、特定の層(例:30〜40代女性、地方在住、育児中)の申し込みが伸び悩んでいる現状を整理します。次に【Where】では、SNS広告からLPクリック、説明会参加、申込みへと至る導線の中で、LPでの離脱、説明会後のフォローアップ不足、そして広告のターゲットと実際のコンテンツの連動性不足といった課題があると考えます。【Why】においては、SNS広告の内容がターゲットのニーズ、例えば「副業」や「子育てとの両立」に十分応えられていないこと、LPの構成の不明瞭さ、説明会の内容と申込みへの動線が断絶していることが原因として挙げられます。最後に【How】として、SNS流入データや属性情報をもとに複数の仮説を抽出し、属性別のクリック率、離脱率、申込率をグラフ化して問題箇所を特定、A/Bテストで各施策の効果を検証し、成果の高いアプローチを標準化して他のターゲットにも応用していく、という一連の具体的な対策を検討しています。

戦略思考入門

利益向上を目指す戦略の新提案

組織目標って何? Week1では、組織のゴール設定について学びました。Week2では、経営者の視点を持ち、戦略的に考える手法を習得しました。Week3では、各種フレームワークを用いて自社と他社の強みを整理し、差別化を図る戦略手法に触れました。Week4では、ゴールに向けてやるべきこととやらないべきことを明確にする選択手法を学び、さらに、単位時間あたりの利益率や顧客の成長性を見極め、企業文化とキャラクターを唯一無二の存在にする考え方を理解しました。 全体利益はどう? そして、Week5では、会社全体の利益率を上げるための考え方を学びました。具体的には、「規模の経済性」、「習熟効果」、「範囲の経済性」を駆使して、会社の利益を追求する方法を学びました。 規模の効果は? まず、規模の経済性についてです。自社製品は受注生産が主で大量生産の感覚はありませんが、10年ほど前から期末に集中しないように取り組んでいます。また、部品を含めた在庫をできるだけ減らす試みも進行中ですが、緊急時の対応(例えば、コロナの影響や故障時)では調達が困難になるリスクもあります。利益率を比較すると海外他社の方が優位であり、自社でも改善が求められていますが、これはグローバルなシェアの高さに起因しているようにも感じられ、改めて組織のゴール設定(Week1)が重要であると考えさせられました. 習熟のコツは? 次に、習熟効果についてです。私の部署の組織戦略の一つに教育強化が掲げられており、「習熟効果」に基づいた考え方が反映されています。取扱説明業務には一定の経験が求められ、新人やベテランともに製品のプロとして期待されています。新人が自信を持って説明できるようになるためには、少なくとも3年の経験が必要です。このため、経験に依存するため、生産性の面で課題があり、社員への精神的負担も大きいのが現状です. 範囲統合はどう? 最後に、範囲の経済性についてです。類似した製品に使用する部品や開発コストを統一し、コスト削減を図っています。使用顧客の視点からも、同じ会社から提供される製品に共通性がある方が使いやすく、販促にもつながります. シェア増はどう? 規模の経済性に関しては、TOVの国内シェア増加がどの程度の変化をもたらしているのか確認し、海外他社と自社の利益率の主要因を事業部に確認する必要があります. 教育見直しは? 習熟効果については、自組織の教育体制を見直し、習熟効果を高めるカリキュラムを作成し、アウトプット型の教育に特化して組織全体の習熟度を向上させる必要があります. 他製品の共有は? 範囲の経済性に関しては、縦割り文化が強いため、開発部が他製品で共有できるものを把握できていません。顧客に近い部署として、他組織で好評な作りや製品を自組織製品に取り入れることでコスト削減につながる提案をすることが重要だと考えています.

デザイン思考入門

デザイン思考で拓く未来のチャンス

デザイン思考の本質とは? デザイン思考とは、単なるアイデア発想の手法にとどまらないものです。「共感」「試行」「発散と収束」を繰り返し、創造的でより良い解決策を見つけるための思考プロセスと理解しました。講義だけでなく、他の受講者との意見交換を通じて特に印象に残った学びや気づきを以下に挙げます。 共感が解決の鍵? まず、共感の重要性です。問題解決の出発点は、ユーザーの立場で深く理解することにあります。本当の課題を考えるためには、観察やインタビューを通じ、その場に顕在化していないニーズを探ることが求められます。 スピード感を持つ試作の重要性 次に、プロトタイピングとフィードバックのスピード感が大切です。素早く試作してフィードバックを受け取りながら改善するアプローチは効果的です。完成形を目指すのではなく、デザイン思考の各フェーズを行きつ戻りつしながら試して学ぶことで、より良い解決策が見えてきます。 発散と収束のバランスは? さらに、発散と収束のバランスも重要です。考えられる選択肢を広げる発散と、最適な解決策を絞る収束を交互に繰り返すことで、創造的な解決策を得ることができます。既存の枠にとらわれず、多様な視点を取り入れることが新しいアイデアを生む鍵となります。 デザイン思考の具体的な応用は? デザイン思考は、特に事業開発や組織開発のコンサルティング業務で応用できると考えました。新規事業開発を支援する際には、顧客ニーズを正確に捉え、適切なプロダクトやサービスを設計する必要があります。ユーザーインタビューや観察を通じて潜在ニーズを引き出し、アイデアのプロトタイピングを迅速に行うことで、事業の方向性が明確になります。 また、組織改革・組織開発を支援する際には、多様な視点から課題を分析することが必要です。エンゲージメント向上策を考える時に、現場の意見を集めながらプロトタイピングを進めることで、実効性の高い施策につながるでしょう。 クライアントへの効果的なアプローチ方法は? クライアントとのワークショップ設計やファシリテーションにも役立ちます。問題を整理し、解決策を共創する際に、発散と収束のバランスを意識すると、より効果的な議論ができます。アイデア創出の段階では多様な視点を採り入れ、その後、アイデアを整理して実行可能なアクションに落とし込むことが有効です。 これを踏まえ、以下のような行動を試してみたいと考えます。まず、クライアントの課題を整理する場面では、共感フェーズを意識し、「なぜ?」を繰り返し問い、本質的な課題を探ります。次に、ワークショップやミーティングをデザイン思考に沿って進め、新規事業のアイデア出しでは発散し、その後収束するという流れを意識します。最後に、プロトタイピングを有効に用い、提案前にシステムモデルを通じて思考を構造化し、フィードバックを得るなどして、提案をより洗練させます。

データ・アナリティクス入門

論理的思考力を徹底的に学ぶ: 実践例多数!

問題解決のフレームワーク 講座全体を通じて、特に学びとなったポイントは次の通りです。 まず、問題解決のフレームワーク「What」「Where」「Why」「How」の順番で考えることが重要であることです。これにより、問題解決のプロセスが論理的かつ体系的になります。 データ分析の視点は? 次に、数値データを分析する際に漠然と数字を見るのではなく、定量分析の5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)を持つことが大切です。これにより、効率性や再現性が向上し、同じ気付きや示唆をより効果的に得ることができます。 また、平均値を取る際には「標準偏差(データのばらつき度合)」という視点を持つことが必要です。仮に平均値が同じであっても、「ばらつきがある」「ばらつきがない」ではデータの意味合いが変わってくるからです。 Howで成果をどう上げる? 問題解決のフレームワークの最後「How」で解決策を考える際には、選択肢を絞り込むための判断基準を明確にすることが肝要です。これにより、成果を上げる可能性が高まり、仮に成果が上がらなかった場合でも、どの判断基準に問題があったのかを振り返ることで、さらなる改善が可能となります。 グラフ選びの新たな視点 関連動画で学んだポイントもいくつかあります。グラフを作成する手順「仮説や伝えたいメッセージは何か?」「比較対象は何か?」「どのグラフを使うのか?」は新しい学びでした。これまでの私は最初から「どうグラフを作ろうか」と考えていましたが、1と2を先に考えることで、自然とどのグラフを使うべきかが見えてくることに気付いたのです。 さらに、マイナスの項目がある場合にはウォーターフォールが有効であることや、何を比較対象とするかによって適切なグラフが異なることも学びました。例えば、ギャップがある場合は横棒グラフやウォーターフォール、時系列やトレンドがある場合は折れ線グラフや縦棒グラフ、散らばりや構成比率を示したい場合はヒストグラムや円グラフ、相関を示したい場合は散布図がそれぞれ適しています。 学びの実践で何が変わる? これらの学びをいくつかの面で活用したいと考えています。まず、自社サービスの課題の明確化や改善に向けて、営業プロセスの課題を整理し、日々の定例ミーティングでチームメンバーと議論を深める場で、得た知識を実践したいと思います。自分だけでなく、チーム全体に学びを共有することで、議論や分析の質を高め、より有効なアクションに繋げたいです。 また、経営分析(財務諸表の比較分析)においても今回の学びを応用するつもりです。四半期ごとに財務諸表を比較分析し、問題を具体的に特定することで、株主への業況説明の説得力を高めたいと考えています。そのためには関連書籍で知識の増強に努めたり、必要に応じて今回のような講座に参加することも検討しています。

「改善 × 効果」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right