データ・アナリティクス入門

比べる力が未来を変える

ライブ授業で感じた点は? 締めのライブ授業では、これまでの学びを振り返る機会がありました。データ分析の手法として、比較を活用する方法を学び、目的設定から仮説構築、データや情報の収集、分析、さらには仮説の検証という一連のプロセスの重要性を実感できました。また、自分の考えにとらわれず、さまざまな視点から検証することの大切さも理解でき、これらの手法をいかに実践し、スキルとして身につけるかが今後の課題であると感じています。 部門業績の課題は? 部門業績分析においては、自部門の営業データを活用し、強みと弱みの再確認を進めています。さらに、セグメント別の成長性や低成長部門の課題を明確にし、改善策の検討や戦略の見直しにつなげたいと考えています。次年度の目標設定にあたっては、今年の実績を論理的に分析し、定量的・定性的な評価が可能な具体的な目標を立てる予定です。すでに各メンバーには来期に向けて自ら考えた目標設定を進めてもらっており、私自身も部門全体の強みや弱み、注力すべきセグメントを整理した上で、各メンバーの目標と比較・検証を行っています。このプロセスを通じて、部門全体で論理的な目標理解を深め、同じ方向性で次年度の業務に取り組むことを目指しています。目標設定は3月中に取りまとめ、次年度からは月次で目標達成度の比較分析を実施し、達成に向けた具体策を全員で共有していく方針です。

データ・アナリティクス入門

データ分析の新たな視点を業務に活かす

データ比較の意義とは? 「分析は比較なり」という考え方の重要性を再認識しました。ビジネスにおける意思決定の際には、データを用いた提言を行う中で"比較対象"や"基準"を明確にしておくことが上流段階で大切であると感じています。 データの見せ方をどう工夫する? また、定量データの種類に応じて、適切な加工法やグラフの見せ方があることを学びました。普段から業務でプレゼンテーション資料を作成していますが、これまでは感覚的に数字を表示していました。今後は、実数で見せるべきものと割合で見せるべきものの区別を意識して、より効果的に可視化していきたいと思います。 分析の視点を資料にどう活かす? 資料作成の際、分析結果や二次情報を取りまとめるにあたり、「比較」や「数字の見せ方」といった、わかりやすい表現方法を意識していこうと考えています。また、業務委託先を選定する際に、選定基準や評価基準を整理するためにも、分析の観点を活用することができると感じました。 新たな観点を業務にどう適用する? これまで意識してこなかった新たな観点を業務に適用するために、まず業務の目的をしっかりと立ち止まって整理し、可視化することを習慣化したいと思います。これにより、意思決定を促進するためのデータ活用の余地があるかどうかを判断し、適切な判断ポイントを組み込むことができると考えています。

アカウンティング入門

数値で読み解く経営のリアル

価値と戦略は一致? 事業活動においては、まずターゲット顧客を設定し、次にどのような価値をどこまで提供するかを決めることが基本です。この段階で、必要な経営資源や資金の規模が大きく変わるため、環境の変化に応じて顧客に提供する価値を見直す必要があります。今回の学習では、経営判断をサポートするツールの一つとして、財務三表について取り上げました。 三表で現状把握? 財務三表は、経営資源や資金の現状を数値化し、企業や事業の状況を定量的に把握するための重要な資料です。自社の経営状態の正確な把握に加え、他社との比較を通じて強みと弱みを明らかにすることができ、ターゲット設定や中期計画の策定にも役立つと感じました。 意見交換の価値? また、講座では動画での座学だけでなく、さまざまな業種の受講生との意見交換を通して、多角的な視点から分析を行う機会がありました。学んだ知識を活用して分析や課題抽出に取り組むことで、実践的な理解が深まるとともに、今後の経営判断に応用できる点が印象的でした。 部門横断で見る? さらに、経理や財務部門以外の人が会社の財務三表を見る機会の重要性も再認識しました。情報が十分に揃わなければ、それ自体が会社の課題となりうるという考察は、非常に示唆に富んでおり、今後の企業運営における課題意識を高めるポイントとなりました。

デザイン思考入門

実践体感で学ぶイノベーション

プレゼンは納得できる? プロトタイプの説明については、完成されたプレゼンシートにて発表する方が納得感が得られると感じました。そのため、プロトタイプ作成や報告の優先事項は、スピード、実際に体感・体験できること、そして低コストであると考え、報告もこれらを重視しています。 体感をどう見直す? また、これらの優先事項を活かすためには、人間が直接体感・体験した感想を重要な情報として捉え、AIを活用して視覚化する方法が有効であると学びました。 データ収集の極意は? 業務におけるプロトタイプやテストは、図面やCGでの可視化に加え、実際に試作された空間として創出されています。これらに対して、顧客の反応を定性的なデータのみならず定量的なデータとしても捉え、比較できるようにすることが求められます。そのため、どのようなデータを収集し、何を提示するか、また提示することでどのような課題解決やニーズの充足につながるかを事前に検討する必要があります。 クライアントの声は? さらに、コミュニケーションの活性化を求めるクライアントに対しては、彼らが何を求めているのかを十分に確認しながら試作アイデアを実際の空間に反映させ、図面化します。そして、アンケートによる定性調査と、図面や空間に対するドット投票による定量調査の両軸で評価を行う取り組みが重要だと考えています。

データ・アナリティクス入門

数値と論理で見える理想の未来

どの方法で解決? 問題解決には大きく2つのアプローチがあると感じています。1つは、あるべき姿と現状のギャップを埋め、正しい状況に戻すための方法です。もう1つは、未来に向けたありたい姿と現状のギャップを解消し、望む状態に到達するための方法です。どちらの場合も、目指す状態と現状を定量的に示すことが非常に重要です。 分析手法は何? そのため、ロジックツリーやMECEといった分析手法が有効だと考えています。これらのツールを使うことで、問題やデータを細かく分解し、整理された形で把握することが可能になります。 顧客データ整理はどう進む? 具体的には、現在保有している顧客データに含まれる情報を、国や契約の条件などの観点から整理する必要があります。これまで「顧客データ」とひとまとめにされていた部分を、ロジックツリーを用いて項目ごとに分解し、各顧客についてどのような情報が含まれているのかを明確にすることが求められます。また、業務における理想の状態と現状のギャップについても、数値などの定量的な指標を用いて示すことが大切だと感じました。 手法活用の可能性は? このように、定量的な情報の整理と、体系的な分析手法の活用が、問題解決を実現する上で不可欠であると再認識しました。今後も、これらの手法を業務の改善に積極的に取り入れていきたいと思います。

戦略思考入門

優先順位に革命!社内広報の秘訣

どう優先順位を決める? 優先順位の付け方について、日頃から意識はしているものの、実行には至っていないと実感しました。その原因は、感覚的な対応に頼っていたことだと思います。具体的な数値を用いて、定量的に判断できる場合には数値で明確化し、そうでない場合でも様々な観点からどこに注力すべきかを書き出して判断しようと考えました。 社内広報の効果は? 特に社内広報の実施において、この考え方が役立つと感じています。全ての要望を受け入れるのではなく、自部門の目標に沿っているかを大前提として考え、その情報を求める社員がどのくらいいるのか、公開することでどのような価値が生まれるのかを明確にしながら実施を検討したいと思っています。一方で、メンバーに自発的に取り組ませる仕事を提供することも重要です。受け取る社員の価値と自部門のメンバーの成長を考慮して、実施の判断を行いたいと考えています。 実施基準はどう決める? 社外だけではなく社内広報に関しても、実施判断のための基準を設けたいと思っています。現在は実施を前提とした記事テンプレートを用意していますが、実際に実施するかどうかの判断は明確にされておらず、都度非論理的に判断してしまっています。実施基準を明確にすることで、メンバーも「なぜこの仕事を捨てるのか」を感情論ではなく理解できるようになると思います。

データ・アナリティクス入門

分析で見つける未知の可能性

分析開始の目的は? 実際に分析を始める前に、その分析の目的を明確にすることが重要です。目的が曖昧では、分析自体の意味がなくなります。分析の本質は比較にあります。比較を行わなければ、物事の良否を判断することはできませんし、絶対的に良いものや悪いものというものも存在しません。意思決定が相対的な比較によって行われると考えると、分析(比較)の重要性が一層理解されます。 比較対象の選び方は? そのためには、適切な比較対象を選ぶことが必要です。しかし、すべての情報を持っているわけではなく、自分の理解が正しいかもわからないため、この作業は現実としては難しいこともあります。 解決すべき課題は? 分析を通じて解決したい課題は多岐にわたります。たとえば、効果的な授業や学習方法を知りたいとき、また生徒募集活動をどの地域で積極的に行うべきか、生徒や保護者の学校への満足度、勤務校の強みと弱みの分析などです。これらの目的を達成するために、適切な分析を行うことが望ましいです。 どんなデータ収集? まずは、各目的に応じたデータ収集から始めたいと考えています。生徒の成績推移や大学合格実績といった定量分析に加え、アンケートやインタビュー(個人・集団)による定性分析も通じて、データを集め、その中から中核となる特質を抽出するようにしたいです。

データ・アナリティクス入門

数字でひもとく学びの魅力

講義の要点は見えてる? 今回の講義を通じ、問題解決プロセスにおいて重要なポイントを再認識しました。特に、あるべき姿と現状の間にあるギャップを具体的な数字で示し、関係者全員で合意を取る必要性を強く感じました。定量的に現状とあるべき姿を比較することで、解決策の効果を明確に把握することができると実感しました。 MECEの意味って何? また、MECEのとらえ方についても改めて考える機会となりました。意味のある分類方法を意識し、意図しない「その他」に頼らず、明確な目的意識を持って分類することの重要性を学びました。これにより、情報の整理がより具体的で理解しやすくなると感じています。 分類にはどんな工夫? さらに、自社サービスのポジションや方針を決める際、特にB2B2Cの業務モデルにおいては、顧客自身とエンドユーザーの双方をMECEに基づいて分類する必要があると再認識しました。具体的には、顧客規模や産業、予算状況といった基準で顧客を分類し、エンドユーザーについては年齢、性別、アプリの利用状況などを考慮することが大切です。 投資の判断はどうする? 以上の学びをもとに、現状とあるべき姿のギャップを明確にし、自社のリソースが十分に機能しているか、あるいはどの程度の投資が必要かを判断するための貴重な材料としたいと考えています。

データ・アナリティクス入門

比較で見える新たな視点

比較方法はどう決める? 分析の基本は比較にあります。分析対象をただ単に見るのではなく、相違点や類似点を明確にするため、対比できる条件を設定しながら進めることが重要です。 数値の意味はどう捉える? 定量分析を行う際は、単に数値の平均値や個数を求めるだけではなく、その背後にある意味を捉えることが求められます。例えば、男女のデータ分析においては、単位に数値を割り当てた場合の平均値そのものに意味はなく、それぞれのグループの人数や全体に占める割合を把握することで、ターゲットや戦略を導く上で有効な情報が得られます。 グラフの選び方はどうする? また、データの視覚化は、分析結果を他者と共有する際に非常に有効です。グラフを用いることで、複雑な情報も整理され一目でわかるようになりますが、データの特性に応じた適切なグラフ形式を選ぶことが大切です。 仮説設定をどう見る? さらに、分析においては、目的や仮説を明確にしてから着手する姿勢が重要です。分析する際は、比較対象となる条件を十分に整え、個々のデータに対してどの指標(個数、平均値、標準偏差など)を用いるかを慎重に検討することが必要です。自分が伝えたいメッセージと、相手がどの程度の情報を理解できるかを意識しながら、適切なグラフや表現方法を選ぶことも忘れてはなりません。

アカウンティング入門

魚屋例が教える経営のヒント

魚屋授業はどう感じた? ライブ授業では、魚屋の例題をもとに事業形態の拡張を考察し、企業活動に欠かせない経営資源(ヒト、モノ、情報など)の役割について学びました。多様なキャリアやバックグラウンドを持つ受講生の意見によって、自分では思いつかない視点が提供され、企業活動は複合的な要素によって構成されているという気づきを得ました。 新規案件はどう評価? 今後の学びとして、まずは新規案件獲得時に、その案件が自社の経営状況へ与える影響を定量的に評価できるようになることが求められます。さらに、社内決裁や上席への説明において、評価結果を誰にでも分かりやすく伝え、知識を基に同僚との議論をリードできる能力を身につけることも重要です。 財務理解は広がる? また、財務諸表の基礎知識を習得し、グループワークなどを通じて読み方や評価方法について議論を重ねることで、理解を一層深めることが期待されます。 知識応用はどう進む? 今回の授業での魚屋の例を踏まえ、他の受講生がどのような企業活動を展開しているのか、またそれがどのように財務諸表に反映されているのかを互いに共有し合いたいと考えています。さらに、本講座で学んだ知識を自社の事業に応用する際に直面する難しさや特有のポイントについても、議論を通して理解を深めていきたいと思います。

データ・アナリティクス入門

ギャップを埋める数字の魔法

何が問題なの? 問題解決に取り組む際、まずは「何が問題か」「どこで問題が発生しているか」「なぜその問題が生じたのか」といった基本的なステップを意識することの大切さを実感しました。特に、課題と目指す姿とのギャップを数値で示すことで、頭の中で漠然と把握しているだけでなく、実際にどれほどの差があるかを具体的に明らかにできる点に強く共感しています。この手法は、他者に説明する際にも説得力があり、問題の重要性を再確認する良い手段だと感じました。また、従来の「あるべき姿」と現状のギャップだけでなく、未来の「ありたい姿」との比較にも目を向け、より具体的な分析とアクションに結び付けていきたいと思います。 分析の新たな視点は? 日々のビジネス分析においては、客数や単価のどちらに課題が潜んでいるのかを正確に把握することが重要です。これまで、パターン化された切り口での分析に偏りがあったため、異なる視点からの分析の必要性を感じるようになりました。また、分析手法としては、層別分解や変数分解を意識したMECEの考え方を活用し、情報の抜けや重複がないかを継続的に確認することが不可欠です。今後は、定性・定量の両面から「あるべき姿」を具体的に数値化し、現状とのギャップを明確にすることで、より効果的な課題解決に取り組んでいきたいと考えています。

データ・アナリティクス入門

問題解決力が飛躍的に向上した学び

問題の明確化の重要性とは? 問題解決の4ステップ(What→Where→Why→How)のうち、最初のWhat(問題の明確化)の重要性について学びました。問題の明確化には、ゴールと現状とのギャップを定量的に数字で示すことが大切です。これにより、現状維持でよい部分と強化すべき部分が明確になります。 未来を見据えた戦略とは? さらに、問題がない場合でも、よりよい結果を目指してテコ入れをする際(例えば単価改定や機能追加など)には、現状の状況判断が重要です。また、「もれなくダブりなく」というMECEの洗い出しも欠かせません。 情報共有を促進する方法は? 例えば、自社ECサイトの会員数を120%に伸ばしたい場合、ロジックツリーやMECEを使って会員登録のモチベーションとなる部分を洗い出したり、利用者に行うアンケートの項目を設定する際に役立つと感じました。ロジックツリーを使うことで情報を可視化し、他のメンバーとの情報共有にも役立てられそうです。 過去の例に頼らない新しいアプローチとは? これまで、企画やプロモーションは過去の例を参考に進めることが多かったですが、今後は目的を明確化し、What(問題の明確化)を意識して進めることで、現状の把握に役立て、それを基にした立案に活かしていこうと思います。
AIコーチング導線バナー

「定量 × 情報」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right