データ・アナリティクス入門

物流の待機料問題を解決する分析手法の習得

分析の基本とは? 「分析とは比較である」という教えについて学びました。これは、課題を要素に分解して整理し、個人や会社の状況に応じた基準(目的)を設けて、その要素と基準を比較することを意味しています。基準を「達成すべき目的」とすると、各要素の優先順位や捨てるべきところが明確になってくると感じました。逆に、基準に満たない要素は改善策の検討対象として捉えることができることも学びました。 物流業界での分析方法は? 私は物流会社で働いており、2024年問題の一つとして「待機料」の明確化が挙げられます。待機という問題を要素(要因)に分解し、それらを自社都合と輸送会社都合にグループ化することで、分析の対象が明確になると考えました。 データ活用で何が変わる? 現在、導入済みのアプリから取得できるデータを使い、要素を整理して分析対象を決定する予定です。本講座を通じて、適切な分析方法を理解していこうと考えています。 待機料と時間の相関は? 具体的には、待機料の標準偏差値を算出することで支払い金額の正常範囲を決定し、異常値はチェックする体制を構築します。また、待機料の発生要因と待機時間の相関関係を数値化し、どの要素に対して改善策を打つべきかを社内で共有します。

データ・アナリティクス入門

データで見える未来の仕事術

平均値を使う意味は? 平均値を中心に使っていたものの、実はその名称や意味を十分に理解できていなかったことに気付きました。加重平均や幾何平均も実は使ってはいたのですが、今回の学びで、自分の仕事の中で具体的にどう応用できるかをイメージすることができました。 散らばりはどう捉える? また、散らばりや標準偏差といった指標を通じて、データ比較のためにさまざまな基準があることが理解でき、非常に興味深かったです。普段はあまり使っていなかったヒストグラムも、実際に活用することで、案件のサイズがどこに集中しているかが一目で分かり、次の一手を考えるためのヒントになりそうです。 どの平均を選ぶ? さらに、加重平均は現状のデータ分析に役立ち、幾何平均は来年度の数字を検討する際に採用できそうだと感じています。標準偏差の活用法については、これから意識しながら幅広い視点で考えていく予定です。 実践で数字はどう変わる? 明日には、過去のデータをもとに加重平均、ヒストグラム、幾何平均の活用を実践し、特に幾何平均については過去数年分のデータを基に来年度の数字の妥当性を検証してみたいと思います。これまで漠然と感覚で判断していた数字が、しっかりとした目安となると確信しています。

データ・アナリティクス入門

実務で輝く!数値戦略の新発見

代表値の選び方は? データの特性に合わせた代表値の取り方を誤ると、算出された数値が意味を持たなくなることを再認識しました。成長率などの数値結果に触れる機会はあったものの、その計算に幾何平均が用いられていることは、私にとって新たな学びとなりました。 標準偏差の使い方は? また、これまでグラフなどのビジュアルに頼ってデータの散らばりを把握していたため、標準偏差を用いて数値として表現するという手法に触れることができたのは非常に興味深かったです。 幾何平均で何が変わる? 加重平均や中央値は、データの検証において従来から活用していたものの、売上の伸長率を算出する際に幾何平均を用いる方法は、早速実務に応用していけると感じました。さらに、標準偏差を算出することで、データのばらつきを具体的な数字としてイメージし、説明に説得力を持たせる工夫を進めたいと考えています。 実務でどう活かす? 具体的には、部門の各営業メンバーの業績比較や、セグメント別の業績比較において個々の成長率を算出し、その結果を問題点の洗い出し資料として活用したいです。また、商品別の売上推移に成長率を適用することで、優劣を明確化し、問題への対策検討に役立てたいと考えています。

戦略思考入門

無駄を減らし効率UP!振り返り術

優先順位をつけるためには? 捨てるという行為は、優先順位をつけることを意味します。そのためには、現状を分析し、コスト対効果をデータとして明確に可視化することの重要性を学びました。しかし、売上や利益、品質など、具体的に何を目的や目標とするかを決定するノウハウは、別途必要だと感じました。 SES案件営業の新戦略とは? まず、SES案件の営業戦略についてです。売上や利益の拡大、技術的な成長が期待できる顧客をターゲットにした営業活動や社員の採用、育成を行います。具体的には、既存の顧客に対して、企業の売上や成長率、自社の売上、人件費、利益額、それに要員一人当たりの売上や人件費、利益額を算出し、費用対効果を明確にします。そのうえで、営業活動やリソースの投入戦略を策定します。 エンジニアの生産性をどう向上? 次に、エンジニアの生産性向上についてです。残業が多い社員やチームに対して、どのような作業に時間を注いでいるのかを可視化し、各作業の効果を確認します。そして、時間をかけるべき作業であるかを判断し、削減可能かどうかを検討しながら対策を考えることが重要です。このアプローチにより、無駄な作業を削減し、作業の優先順位を適切に設定することで、生産性の向上を図ります。

アカウンティング入門

アカウンティング苦手でも大丈夫!学び直しの一歩

明確な目的を持つ理由とは? 森先生による1回目のライブ授業では、本講座を受講する際に明確な目的を持つことの重要性が強調されました。漠然と授業を受けるだけでは知識は身につかず、受講完了後の自分の姿をしっかりとイメージすることから始めるべきだとされました。私も他の受講生同様に、アカウンティングは言葉が難解で、数字に強くないと理解が難しいという固定概念を持っていました。しかし、この講座では構造と意味合いを理解することが目的であり、財務諸表に記載された内容を理解できることが求められるので、少し肩の荷が下りました。 経営報告会を活用するには? 社長が年に数回開催する経営状況の報告会では、アカウンティング情報を用いた説明が行われます。これまではその情報を深く理解することができずにいましたが、今後はそのような報告を理解し、さらに自ら分析して今後の経営計画を立てられるようになることが理想です。 学びを深めるための具体策 これを達成するために、まず過去の社長説明資料を確認し、直近の経営状況についても確認することから始めます。また、グループワークまでに森先生が紹介した書籍を購入して読み進め、その内容をグループワークで説明できるように準備します。

アカウンティング入門

図解で広がる学びと戦略の扉

図式の効果は? PL、BS、CSをつなぐ図式は非常に参考になりました。各要素の関係がわかりやすく示されており、文字情報だけでは得にくい理解が深まりました。テキスト情報も大切ですが、図式を効果的に用いることで、知識の習得が一層進むと感じました。今後は、すべての要素を図式化できるよう、各要素のつながりを意識して学習していきたいと思います。 知識活用はどう? 知識そのものは、事業構造や実態の把握に基づいた戦略の提言や予算策定などに活かしていきたいと考えています。その際、利害関係者に分かりやすく伝えることが重要だと感じています。また、部下のレベルアップのために、自分自身が良き指導者となり、効果的な教え方の方法論を身につけていくことも目標です。 議論の進め方は? さらに、業務上で体験した新たな知識を、AIを利用して検証することが好きです。物事の本質を把握し、その意味をAIとのディスカッションで深めることは非常に有効であり、楽しい取り組みです。知らないことや本質、定義が曖昧な知識に気づいた際は、すぐに議論を行うようにしています。これまでは単発的な知識に焦点を当てていましたが、今後は体系化や方法論についても積極的に取り組んでいきたいと思います。

データ・アナリティクス入門

仮説と検証で切り拓く成長

問題発見はどう進める? 問題の原因を探るため、まずプロセスごとにアプローチする手法を学びました。その中で、A/Bテストを活用し、仮説を立てた上で実際に検証を重ねる方法が効果的であると理解できました。また、総合演習を通して、これまでの学習内容を振り返り、自分の知識を整理する貴重な機会となりました。 仮説検証は効果的? データ分析においては、目的を明確にし、分析に入る前に仮説をもつことの重要性を再認識しました。分析プロセスを着実に進めるとともに、効果的な切り口でデータを把握することが求められると感じています。取り組んでいるサービスのユーザ活用場面を拡充するためには、利用シーンをプロセスに分解し、それぞれを検証した上で改善策を策定することが必要です。 分析の進め方は? 具体的には、各プロセスに対して適切なデータを条件を揃えて抽出し、抜け漏れなく検証を進めることが求められます。改善策を検討する際には、複数の選択肢を根拠に基づいて検討し、基準を設けることで効果的な施策に絞り込むことが重要です。また、分析作業は複数のメンバーで進めるため、作業開始前に目的や意味合いを共有し、各メンバーが同じ認識で取り組むことにも留意すべきだと実感しました。

リーダーシップ・キャリアビジョン入門

エンパワメントで広がる仕事の余裕

エンパワメントの意味は? エンパワメントという言葉を初めて知りました。自分に余裕を持つことは非常に難しいですが、日頃から意識的に余裕を保って行動しているため、今回の内容には納得できる部分がありました。一方、目標設定においては6W1Hの観点を踏まえると形式的になりがちですが、相手に合わせて柔軟に対応することが重要だと感じました。 どのように任せる? エンパワメントの実践にあたっては、まず業務を任せる前に、対象者の状況や周囲の環境について十分に把握することが大切だと考えました。その上で、どのようにエンパワメントを進めるか自分なりに計画し、メンバーにもその計画に基づいて動いてもらう形が理想です。現在の業務でも、知識や経験に差があるメンバー同士で助け合いながら進めることで、一人では難しい課題もチームとして解決し、その学びを個々に活かせるよう努めています。 目標連動のコツは? また、経営層から示される目標を部や課単位でさらに細分化すると、全員の目標が一致するとは限りません。自分は、まずメンバーの視点で目標を考え、その上で課の目標にどのように連動させるかを検討する方法を半分ほど取り入れています。皆さんの実践されている方法もぜひ伺いたいです。

クリティカルシンキング入門

営業成績向上のカギはデータ分析!

--- 分析の重要性をどう捉える? 分かるということは、分けることです。ひとつの観点だけでなく、全体をざっくり分けてから更に分解していくことの大切さを学びました。例えば、単に率や平均の傾向が見えたとしても、他の視点から考慮する必要があります。これまで、分析の必要性や意味に疑問を抱き、実行をためらうことがありましたが、たとえ数字が出なくても、失敗したとしても、それ自体に価値があるという考え方を知ることができました。 リソース配分の最適化は可能? 営業所全体の新規顧客と既存顧客の比率と目標達成率を比較し、自身の数値と照らし合わせることで、異なる点を検討し、業績向上に繋げていきます。また、受注、失注、継続の際にどんな癖やパターンがあるかを分析し、既存と新規にどの程度リソースを割り当てる必要があるかを判断します。 振り返りを活かすには? 毎週の振り返り時には、他者と自身の数値を比較し、次週の行動指針を設定します。定量的に分析する習慣を身につけることで、説得力のあるトークができるようになることを目指しています。さらに、自身の営業活動において、どの局面で受注できているか、失注しているかを再確認し、改善点を見つけていきます。 ---

クリティカルシンキング入門

データの分析で新たな視点を発見!

どうデータを見やすくする? データの視覚化と多角的な分析の重要性に気づきました。まずは実数を表にまとめることから始めますが、棒グラフや円グラフといった視覚的に理解しやすい形式でまとめることが効果的です。さらに、データの合計や比率を算出し、実際に手を動かして分析を進めることが大切だと感じました。 MECEで全体を整理? MECEとは「もれなく、ダブりなく」要素を分けることを意味します。これを行うためには、集合、変数、プロセスといったアプローチで全体を分けることができます。MECEを活用する際には、まず「全体」を正確に定義することが重要だと学びました。 本当にそうなのか? 研修アンケートの分析や問題解決方法の提案などの課題に対して、これまでの成功体験に偏らず、「本当にそうなのか?」と疑う姿勢を持ちたいと思います。異なる視点でデータを捉え、グラフ化や比率計算を行いながら、具体的な手を動かして分析を深化させたいです。 分解はどう進める? また、要素を分解する際には、MECEの分け方を意識して「漏れなく、ダブりなく」分けることを心がけ、まずは全体を明確に定義することから始めたいと考えています。

クリティカルシンキング入門

あなたも感じる、学びの一歩

どうすれば読まれる? 文章作成において最も大切なのは、相手に確実に読んでもらえることです。いくら内容が充実していても、読んでもらえなければ意味がありません。そのため、メールやチャットツールで業務連絡やリマインドを行うときは、発信のチャネルや時間帯、内容に工夫を凝らしています。今後は、特に冒頭部分に目を引く要素(アイキャッチ)を取り入れて、より多くの人に読み進めてもらえる文章作りを意識していきます。 スライドの伝え方は? また、スライド作成においても、意図がしっかり伝わる文章表現を選ぶことの重要性を痛感しました。事実の羅列や実況中継のような説明になりがちなため、言葉を慎重に選び、伝えたいメッセージの本質がしっかり伝わるよう意識しています。スライド作成時には、まずメインメッセージを整理し、その上で視覚的な効果も取り入れながら作成するよう心がけています。 フィードバックの意義は? さらに、文章作成では、作成した文章に対して上司以外の方からもフィードバックを得るようにしています。上司からはポジティブな評価をいただくことが多いですが、他の視点を取り入れることで、より魅力的な文章にブラッシュアップできると感じています。

データ・アナリティクス入門

数字が語る業務改善のヒミツ

データの集約ってどうやる? データの比較法について、数字を集約して捉える方法、目で見て捉える方法、そして数式を用いて集約し関係性を把握する方法を学びました。普段何気なく実施していることの意味を理解することで、さらに大きな効果を得られる必要性を感じています。 代表値と散らばりの活用法は? また、データ加工のポイントとして、代表値と散らばりの両方を活用する事例を学びました。双方の特性を活かした可視化を上手く利用できれば、より具体的な分析が可能になると実感しています。 工数計算の見直しは? 業務改善の際に、工数の計算方法が一面的であったことにも気付きました。関わる人数や各作業の分析データが欠けていたため、今後はこれらの情報収集にも注力し、ビジュアル化した際の分析範囲を広げる可能性を感じています。 収集データの過不足は? さらに、すでに収集しているデータの過不足の確認も行いました。各個人が提出する情報を一元的に抽出するツールの開発は進んでいますが、項目に不足がないか確認し、もし不足があれば機能追加を実施します。一律に集まったデータに対しては、簡単なグラフ作成を通じて作業記録などの分析を行っていく予定です。

「学び × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right