データ・アナリティクス入門

データ分析の成功術を学ぶ旅

目的はどう設定する? データ分析を効果的に行うためには、いくつかの重要なポイントを押さえる必要があります。まず、データ分析に取り掛かる前に、目的や仮説を具体的に設定しておくことが重要です。これにより、分析がスムーズに進むだけでなく、目標に対して効果的な手法を選ぶための指針となります。 切り口はどう選ぶ? 次に、分析のステップとして、問題解決のプロセスには「what, where, why, how」といった段階を経ることが挙げられます。特に、データをどの切り口で見るかを判断する際は、その切り口が解決に役立つかどうかや、データが入手可能かどうかを考慮しなければなりません。また、平均値を用いる際には、データのばらつきも確認することが不可欠です。代表値を選ぶ場合も、元データの傾向を理解しておくことが必要です。 数値の意味はどう見る? 実数と率を確認することも重要です。たとえ割合が大きく見えたとしても、実数が少なければ優先度は高くないかもしれません。分析はただ闇雲に行うのではなく、数字の根拠に基づいたストーリーを描くことが求められます。そのためには、データの傾向をつかみ、特に見るべきポイントを明確にする必要があります。データは伝えたいことが分かりやすい形に加工することが望ましいです。 解決策はどう選ぶ? 解決策を選定する際には、得た知見をもとに複数の選択肢を洗い出し、判断基準を持って選定することが求められます。例えば、販促施策の振り返りでは、単に目標に対する数値を比較するのではなく、何が成功したのか、どんな改善が必要か、そしてその理由を深掘りすることが重要です。 SNS戦略は見直す? さらに、自社のSNS運営方針の再検討においては、現状の方針が適切かを評価し、必要であれば異なる方向性を検討することも考慮すべきです。インプレッションやコンバージョン率などのデータを参考にすることで、同じ目標に対しても新しいアプローチを見つけることが可能です。 検証はどのように進む? 仮説を立てた後、その検証を進める際には、結論に飛びつかず、複数の視点から考慮することが重要です。これにより、示唆の幅を広げることができ、問題解決に向けたステップを適切に踏むことができます。分析を行う際に少しでも学んだことを次に活かし、適切な場面で適切な手法を用いることが、成功の鍵となります。

データ・アナリティクス入門

数字から見える問題の本質と解決策への道程

分析の本質とは何か? Week1のポイントを復習しました。分析の本質は比較であり、比較する際に注意すべき点は、比較対象を揃えることです。問題解決のプロセスには、What、Where、Why、Howの4つがあります。 問題解決の4ステップとは? まずWhatでは、何が問題なのかを定めます。次にWhereで、問題がどこにあるのかを特定し、あるべき姿と現状のギャップを数字を用いて比較します。この段階ではフレームワークが有効です。Whyでは、なぜ問題が発生しているのかを探ります。そしてHowでは、どのように対処するかを考えますが、すぐにHowに飛びつかないことが重要です。 データ分析の注意点は? さらに、単純な平均値に惑わされず、データのばらつきに留意することが必要です。代表値として平均値、中央値、最頻値をチェックし、ヒストグラムを用いてデータにばらつきがないかを確認します。 仮説の検証方法は? 仮説を立て、その仮説が成り立つかを検証するためにデータを集めます。問題の原因を明らかにするためには、プロセスに分解する方法が有効です。解決策を見つける際には、複数の選択肢を洗い出し、それぞれの根拠をもとに絞り込みます。 チームでのデータ分析をどう進める? こうした復習を行った上で、実践問題に取り組んだところ、数値を見ることや問題の箇所を特定することがかなりスムーズになったと感じました。しかし、複数の回答を絞り出そうとすると視野が狭くなることがありました。データ分析を行う上では、一人で考えるだけでなく、チームメンバーの多角的な視点が必要であると感じました。そのためには、チームメンバーにもデータ分析の考え方を共有し、共通のプロセスを踏むことが必要だと感じました。 お客さまアンケートの分析は? 現在、上半期の施策などの振り返りを行っています。その中で、お客さまアンケートの分析業務が現在のメインの仕事となっています。この分析を通じて、お客さまからの評価のボトルネックとなっている部分を発見し、対策を講じる必要があります。 問題発見と仮説の共有方法は? まずは、問題がどこにあるのかを明らかにするために、関連するデータをビジネスプロセスごとに並べてチーム全員で意見交換を行います。問題の所在が見えてきたら、その原因について仮説を立て、チームメンバーでその仮説を共通認識にします。

クリティカルシンキング入門

分解で拓く学びのヒント

分解方法はどう選ぶ? 分解して考える方法について学ぶ中で、層別分解(部分ごとや性年代別など)、変数分解(売上=単価×数量など)、プロセスによる分解というさまざまな切り口があることを再認識しました。実際に経験を重ねる中、分解することで新しい事実が見えてくると感じる一方、切り口や分け方によって事実の見え方が変わるため、十分な確認が必要であると実感しました。特に、常に「MECE」の概念を意識して切り口を選び、数字の漏れや重複がないかを確認することが大切だと思います。 ロジックは何が新鮮? ロジックツリーに関する学習では、MECEの切り口を組み合わせることで、全体像から個別の要素に至るまで論理的に整理できる点が非常に新鮮でした。動画での解説を通して、この考え方は便利だと感じた一方、実際に自分で応用しながら考えると難しさもありました。しかし、学習を進めるうちに、重要なポイントや具体例を通じて、影響を与えうる要素に対して仮説を立て、インパクトの大きい要因を組み合わせて考察する方法を習得できました。 実績分析のコツは? 得意先となる食品スーパーなどの実績分析においては、全体実績から店舗別やカテゴリー別に分解し、どの要因が結果に影響を及ぼしているのかを的確に抽出するためにロジックツリーの活用が効果的だと感じました。 仕入分析は何重視? また、仕入先商品の分析においては、商品の供給が最終的に販売店や消費者に届き、どのように売れているのかを詳細に検証する際にも、分解する考え方が役立つと考えます。表面的な数字だけでなく、どのような顧客層にどの時間帯や曜日に支持されているのかを把握することで、提案方法や販売店へのアプローチがより具体的になると感じました。 自社提案の秘訣は? 自社提案および実績の分析では、取り扱う商品が複数に及ぶため、単品での販売ではなく「商品群」としての提案が求められることから、売上という表面的な数字だけでなく、分解方法を駆使して細かい部分まで検証・提案に活かしていく必要があると認識しました。 数字確認はどうする? 日常的に数字の確認を行うため、基本の考え方を忘れないようにする目的で、手帳と勉強ノートに「分解方法」「MECE」「ロジックツリー」の内容や重要なポイントをメモしています。これにより、目に触れる機会を増やし、反射的に活用できるように心がけています。

戦略思考入門

フレームワークで見つけた成功への鍵

フレームワーク活用の重要性とは? 今週は、ビジネス課題を検討する際に有用なフレームワークについて学びました。具体的には、顧客、競合、自社の各要因を考慮する「3C」、さらに政策、経済、社会、技術の要因を分析する「PEST」、これらを組み合わせた「SWOT」の有用性と注意点についてです。 体系的な分析の必要性を感じた瞬間は? 特に、3Cフレームワークでは「顧客⇒競合⇒自社(強み)」の順序で考えることが重要であると新たに理解しました。これまでは順序を意識せずに進めていたため、体系的な分析の重要性を実感しました。 フレームワークで解決策を見つけるには? 実際の演習を通じて、フレームワークを使わずに個人の経験に頼ると、課題や施策が偏るリスクがあることも学びました。日常の仕事においても、要因を整理して議論する人とは話がスムーズに進むのに対し、要因が散漫な人との議論は難しいと感じていました。フレームワークを活用することで、議論をスムーズに進めることができると感じています。 ビジネス課題を考察する際のポイントは? ビジネス課題を考察する際に気を付けるべき点として、以下の3つを学びました。いずれも複雑な課題ですが、早速実践に移したいと考えています。 SWOT分析がチームに与える効果は? コールセンターの満足度サーベイ結果に関して、メンバーに課題と対策を考えてもらう予定です。そのために、疾患領域ごとにSWOT分析を使用して検討・発表してもらうアイデアを思いつきました。SWOT分析によって、様々なメンバーが共通の要因で検討しやすくなると考えています。さらに、結果を全体的に検討する際も、統一された視点で議論できるため、有用であると期待しています。 今後の行動計画とは? 今後の行動計画として、以下の2点を立てました。 1. SWOT分析のフレームワークを準備し、メンバーとの課題や対策の検討方針を明確に説明する。明確な指示と方向性を提供することで、効果的な議論を促進します。 2. 私自身もコールセンターの満足度サーベイ結果について、SWOT分析や3C、PESTを用いて課題や対策を検討し、分析結果を具体的にまとめて共有します。この分析は組織戦略を考えるうえで非常に重要ですので、私個人の結果も整理し、組織全体の理解を深めるために貢献したいと考えています。

クリティカルシンキング入門

みるみる変わる!振り返りで学ぶ資料術

目標設定はどう考える? まず、資料作成に取りかかる前に、目標の設定が大切だと感じました。誰に向けて(ターゲット)何を伝えるのか(目的)を明確にすることで、相手の先入観や関心、思想の傾向を考慮しながら、反論などにも備える準備が進みます。次に、資料をロジカルな構成にすることを意識します。MECEやピラミッドストラクチャーなどを用いながら、あらましから入り、問題点の本質や分析、結論へと導く流れを設計します。具体的には、グラフや図などを活用し、収集したデータを分かりやすく表現することに努めます。また、反論や疑問への対応としてサブデータの準備も欠かしません。文言については、説明の際に話しやすいよう、無駄な言葉を省いて見出し的な表現で簡潔にまとめるよう心がけています。最後に、説明後にどこが良く、どこが悪かったかを振り返ることで、次回に活かす学びとなる点が大切だと感じました。 実務に活かす資料作成は? また、私はIT業界に従事している中で、資料作成が実務にも役立っていると実感します。たとえば、要件定義では、お客様の要望をどのように取り入れ実現しているかを、相手の理解レベルに合わせた分かりやすい資料で説明します。プロジェクト管理の場面でも、進捗やリスクの報告で、現状をデータに基づいて分析する際に、このスキルが活用されています。さらに、万が一のトラブル時には、要因の特定や改善の見込み、損失の大きさを資料化して報告する際にも役立ちます。これらの様々な場面で、分かりやすく伝えるための資料作成が重要な役割を果たしていると感じています。 伝達スキルの磨き方は? そして、「他者に伝える」というスキルを身につけるために、行動計画も策定しています。まず、資料作成の準備段階で、目的とターゲットを明確にし、ヒアリングやプロジェクトデータの収集、受け手の嗜好に合わせた準備を進めます。次に、MECEやピラミッドストラクチャーを意識し、図やグラフを用いてシンプルかつ分かりやすい文章で表現します。さらに、資料作成後は発表の工夫も必要です。たとえば、結論を先に述べる、専門用語を避けるなど、聞き手に配慮した話し方を心がけ、質問を受け入れるなど対話にも重きを置いています。最後に、発表後の振り返りと改善策を検討し、次回に活かすサイクルを繰り返すことが、より確実なスキル向上につながると考えています。

データ・アナリティクス入門

データで掴む!プロダクト成長の鍵

定量分析の重要性は? 目的を明確に持つことや分析が本質的に比較であることを改めて理解し、以下の観点で新たな気づきを得ました。まず、定量分析の重要性です。適切な比較を行うためには、目の前の事象やデータだけでなく、「Aがない場合」といった事象の背景も考慮に入れ、比較対象を慎重に選定する必要があります。また、仮説を立てることで分析の精度を上げることができると感じました。 アプリ戦略と仮説の関係 現在、私はアプリのプロダクトマネージャーとして、プロダクト企画や戦略立案を担当しています。また、自社事業でアプリやプロダクトを使って事業成長戦略を描くというミッションを追っています。市場データや競合比較、ユーザーの売上データ等を用いて仮説を立て、精度の高い分析を目指しています。この手法は仮説の精度を向上させるための手段となり得ると思います。 ユーザーのペインとは? 分析が役立つと考えられる場面は以下の通りです。まず、ユーザーのペインがどのような数字に表れているかについてです。特に、弊社のヘルスケアアプリにおいて、ユーザー記録データの推移と一般的な健康データを比較し、特定のセグメントにおけるペインを特定できる可能性があります。また、国内外の市場比較から次世代市場の動きや外資企業の動向予測が可能になるとも考えています。 市場分析に必要なステップ 市場分析においては、目的の言語化が重要です。市場分析は主に「自社プロダクトの市場成長性と方向性決定のため」「自社事業成長戦略のポジショニング決定のため」の二つの観点を想定しています。目的ごとに仮説を立て、分析軸を決めることが必要です。具体的には分析目的をMECEで言語化し、優先順位を付けて最上位から着手します。何をどのように比較するか、仮説が本質的な目的から外れていないかを確認し、ゴールまでの計画を立てます。 データ分析で見える強みと弱み 自社プロダクトの分析には、「あるべき姿」と現状のギャップを言語化し、そのプロセスとしてデータ分析を活用します。市場ポジションの分析では、自社プロダクトの利用状況推移と同セグメントのアプリの一般的な状況を比較し、強みや弱みを特定します。また、ユーザーのペインを見つけるためにデータ分析を行い、アンケート結果やユーザーインタビュー結果を再評価し、インサイトを見出します。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

データ・アナリティクス入門

データ分析で見つける新たな視点

データ分析における比較の重要性とは? データを比較することは、他のデータと比較することでその意味合いを読み取ることにあります。繰り返しになりますが、「分析は比較なり」が重要です。単純な平均では見落としやすい情報を把握するために、データのビジュアル化を駆使し、バラつきを視覚的に理解することが求められます。比較を行い、グラフを解釈することで仮説を立て、その結果として次に分析すべきデータや分析の深掘りの方向性が明確になります。 代表値だけで十分か?アプローチを考える 大量のデータを比較するアプローチについて考える際、代表値の使用だけではデータの分布状況がわかりません。データの分布を考慮するために、標準偏差を併用します。標準偏差が大きければバラつきが大きく、小さければデータが集約していることを意味します。また、データをビジュアル化することも重要です。実際の業務では、加重平均とデータのビジュアル化が主に行われています。 代表的な数値には以下のものがあります: **代表値** 1. 単純平均 2. 加重平均 3. 幾加平均 4. 中央値 **散らばりを表す数値** - 標準偏差:標準偏差が大きいとデータがばらつき、小さいとデータが集約している。正規分布と2SDルールも考慮します。「起こりにくいことが起こっている」という実感値は5%です。 分析の深化にはどのプロセスが必要? 分析の内容に応じた代表値を使い、内容に応じたビジュアル化の方法を考えることが大切です。案件の特徴を「プロセス×視点×アプローチ」で分析することに重きを置くと良いでしょう。会社の施策展開にあたっても、目的に応じた比較を行い、ビジュアル化し、そこから仮説を立てて分析を深めていくサイクルを徹底していきます。過去の導入事例から仮説検証を行い、どの層にヒットしているかをビジュアル化し、現在進めているターゲティングの選定を進めていくことが求められます。 学びの共有はどのように行う? まず、メンバーにWEEK3の学びを共有し、現在取り組んでいる施策のターゲティングに役立てたいと考えています。根拠のあるデータを作成し、より良い意思決定に繋げることが目標です。代表値と標準偏差の仕組みを理解し、必要に応じて使い分けるために、日常の業務に取り入れてみることから始めましょう。

クリティカルシンキング入門

イシュー解決力で実務が変わる瞬間

今週の学びは何? 今週、このコースの学びを整理し直し、3つの重要な点を改めて認識しました。 問いの意義は何? 第一に、「問い」が何かを考え、それを明確にすることは非常に重要です。イシューを特定することで、なぜその問題について議論しなければならないのか、その目的がはっきりします。 イシューをどう特定? 第二に、イシューを特定するためには、既存のデータを様々な角度から分析し、ピラミッドストラクチャーで情報を整理・構造化する必要があります。これにより、本質的な問い、「イシュー」を決定し、解決することが可能となります。 表現方法はどう? 第三に、相手の立場に立って表現し、主語や述語を明確にすることが大切です。スライド作成時は、グラフの活用やメッセージの強調などを通して、何を伝えたいのかを分かりやすく示すことが求められます。 業務にどう活かす? この学びは、日常の業務、たとえば「関連部署への調達コスト説明報告」や「新規プロジェクト立ち上げ・運営」「部署内の売上報告」など、さまざまな場面で活用できます。なぜなら、これらはすべて課題解決や他者との協働を伴い、問いを特定し、構造化して解決することが本質だからです。また、他者に対する表現は、強調するポイントやメッセージを明確にすることが重要です。 調達報告は何故? 具体的な活用例として「関連部署への調達コスト説明報告」を挙げると、以下のようになります。 【考え方】 これまで、報告内容は漠然と定められていましたが、まず「なぜ報告するのか、相手は何を知りたいのか」を明確にすることから始めます。これにより、報告内容や方法、頻度、対象者を最適化できます。特に調達コストについては、各品目の状況に応じた本質的なポイント「イシュー」を特定し、説明に活かしたいと考えています。大きな金額や重要品目については、ピラミッドストラクチャーを作成・提示し、その考え方を共有することで、相手の納得度も高まると感じています。 伝え方はどうする? 【表現】 先方が知りたいことや、その後の情報の取り扱い方を明確にした上で、グラフの見せ方や強調ポイントを調整します。また、どの視点(相手目線、自部署目線、自分目線)で話をするのかに注意を払い、主語と述語を明確にしながら報告を進めます。

データ・アナリティクス入門

データ活用で未来を切り拓く鍵

目的を明確にする重要性は? 目的を明確にすることと、正しい比較を行うことは非常に重要です。動画の例では、提示された数字をそのまま信じてしまう場面がありましたが、実際のビジネスシーンでも同様の例は多いと感じます。そもそも、その数字は何のために存在するのか?どのような基準で比較しているのか?比較の手法や数字の計算、抽出方法は正しいのか?データの精度や信頼性も重要です。AIの助言を受けて、身近な実例として新聞のチラシやテレビショッピングに出る数字を見て、何を示しているのか粘り強く理解していきたいと思います。例えば、「当社比」とは一体何を指しているのか?私の両親もそのまま鵜呑みにしているようなので、注意したいところです。 戦略経理とは何か? 経理に関しては、記帳や財務諸表作成がAIや外注で可能になると考えています。ただ、仕訳を行い記帳している際に「不思議だ」と思う点があり、そこを深堀りすることで経費や売上を分析し、会社全体が利用できるデータにすることができるのではないかと考えています。「戦略総務」や「戦略人事」という言葉を聞いたことがありますが、「戦略経理」という考え方もあって良いのではないかと感じます。 データ・ドリブン経営をどう進める? 意思決定にはデータの利用が不可欠です。データ・ドリブン経営という言葉が以前からありますが、そもそもデータに基づかない経営が存在するかという疑問が湧きました。実際の現場では感覚や感情に基づく経営が主流でしたが、私が関与する場面ではデータに基づいた意思決定を推進していきたいです。 仕事の目的を再確認する重要性 業務全般において、目的を明確にすることが重要です。これまでの仕事の中で、議事録作成などの業務において何のために行うのかという明確な目的がなかったため、非効率的となっていました。しかし、目的を明確にすることで効率的に正しい結果を得られるようになることを意識したいと思います。 転職活動で心掛けることは? 現在、転職活動中で新しい職場を探している中、今後の行動指針として、意思決定に際しては必ず数字の裏付けを吟味すること、目的の明確化を徹底することを心掛けたいです。また、以前に読んだ本や少しかじった統計検定の内容と重なるところが多いことから、統計学を一度学び直したいと考えています。

データ・アナリティクス入門

数字が語る!原因分析のコツ

原因分析のポイントは? 「why:原因を分析」という問題解決のステップについて学び、実際の業務に活用するためのヒントを得ることができました。原因分析では、問題がなぜ発生したのかデータを基に追及し、原因が特定できた後に解決策を検討するという流れを確認しました。 プロセス分解の極意は? この授業で得た学びは主に2点あります。まずは、データをプロセスに分けて考える方法です。課題では、ウェブサイトの広告表示から体験レッスンへの申込に至る一連のプロセス(広告表示→広告クリック→申込)の各段階のデータを比較し、同じ経路を辿った中でどこで数値が落ちているかを検証しました。比較する際は、各プロセスの分母が異なるため、率で示す点が重要です。率が低いプロセスに問題があると考え、具体的な原因を探る有効な手法だと実感しました。この方法により、どこから改善に取り組めばよいのかが明確になり、必要なデータの選定も容易になると感じました。 原因思考の広がりは? 次に、原因を考える際は思考の幅を広げる必要があると学びました。フレームワークの一つとして、対概念という視点を活用する方法があります。たとえば、「自社の戦略に原因がある」と「自社の戦略以外の要素に問題がある」という二つの視点から原因を考えることで、一方向への固執を避けることができます。この手法は、原因の決め打ちを防止するのに非常に有効だと感じました。 遅延の要因は? 実際の業務で、業務の遅れが他部署に影響を与えている場合、まずはその業務を複数のプロセスに分解し、どの段階でボトルネックが発生しているのか、数字を元に比較することが有効だと考えます。原因追求においては、MECEの考え方も必要不可欠です。さらに、原因に関わる要素が明らかになったら、それ以外の可能性も併せて検討することで、一面的な見方に陥らずに対策を練ることができると実感しました。 学びをどう今後活かす? この学びからは、事象には必ずプロセスが存在し、分解して比較することで原因を特定できること、そしてよい事例についてもプロセスの整理が応用可能であることを改めて確認しました。今後は、問題だけでなく成功事例にもプロセスの視点からアプローチし、より幅広い視野で原因と対策を考えられるよう努めていきたいと思います。

クリティカルシンキング入門

問いが未来を拓く学びの一歩

課題の出発点は? 仕事で求められる課題に取り組むには、まず「問い」を明確にすることが大切です。問いがはっきりしていないと、自分だけでなく関係者全員の考えの方向性が揃わず、答えを見つけるのが難しくなります。また、問いが大きすぎると、思考が広がりすぎてしまうため、適切に絞り込む必要があります。 課題の見方は? 問いを明確にするためには、まず課題そのものを正しく把握することが求められます。直感的なイメージだけでは、思い込みや偏った視点が働くことがあるため、利用者、経営者、担当者、競合者、上司、部下など、さまざまな具体的視点から課題を見ると、新たな糸口が見つかりやすくなります。さらに、関係するデータをもれなく、ダブりなく分析することも、新たな視点に繋がります。 答えは見えてる? その結果、たとえ明確な像が浮かばなくても、問題に対して「解」がなかったという答えが得られる場合もあります。問いに取り組む際には、横道にそれず、関係者全体の時間を無駄にしないよう、最初に示した方向性に沿って答えを求めることが重要です。 事例から何学ぶ? 具体的な事例として、郵送検診の受診者数改善の取り組みを考えます。これまでは、受診者が一般に理解しやすい案内文を作成するため、他の医療機関の文例を参考にするのみで、データ分析に基づいたアプローチは行われていませんでした。今後は、受診者の年齢層や性別、その他の属性をしっかりと分析し、アプローチすべき対象を明確にした案内文を作成することが求められます。案内の方向性が定まった段階で、同僚からの意見も取り入れながらプランを練っていきます。 伝える工夫は? また、成果につながるアウトプットには、何を伝えたいのか目的を明確にし、主語や述語をはっきりさせることが重要です。説明の組み立ては、結論、目的、理由の順で整理し、状況分析には適切な表やグラフを利用するなど、情報の流れや優先順位にも配慮する必要があります。 今後の課題は? 最後に、「問い」を明確にすることの重要性や、その際の制約について具体的に理解できる文章になっている点は評価できます。さらに、問いを絞り込む具体的な手法や、異なる視点を活用した経験に基づく考察を加えることで、理解が一層深まることを期待しています。

「分析 × 表」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right