アカウンティング入門

数字とストーリーで描く成長戦略

損益の分類はどう? かかった支出が損益計算書上で各要素に分類され、それぞれの分類方法を理解することができました。利益を上げるためには、ビジネスのコンセプトに応じてどこを改善すべきかをストーリーとして捉えると分かりやすいという点も納得できました。 会社の方向性はどう? また、現在務めている会社の方向性や目標が、今後PLのどの部分に大きく影響を与えるのかを予想し、理解したいと感じました。同時に、自部門でどのように貢献できるのか、会社の利益と企業価値向上の両面から目標を設定する必要性も実感しました。 市場の動向はどう? さらに、会社の方向性と市場での立ち位置を踏まえて、自社の損益計算書を過去と比較しながら、どの点が伸びているのか、また落ちているのかを数字で読み解くことで、市場の流れや将来の自社の位置付けを予想してみる重要性について学びました。

アカウンティング入門

数字が語る採算改善の全貌

売上と費用の秘密は? この講座を通じて、売上を増やすか費用を下げるかという基本的な考え方や、会社全体の儲け(PL)の仕組みについて学びました。損益計算書では収益、費用、そして利益がどのように連動しているかが明確に示されており、企業活動における採算向上の重要性が伝わります。 全体をどう見る? また、営業担当としての視点にとどまらず、上位の立場から全体を俯瞰して判断する必要性も感じました。これにより、事業やプロジェクトごとの採算改善活動が、どのように全社の成績につながっているのかを具体的に理解することができると実感しています。 自社の指標は何? さらに、自社のPLを過去の数値と比較することで、これまでの取り組みや全社での活動がどの部分で成果を上げているのか、またどこを改善すべきかを客観的に評価できるようになった点も大きな学びでした。

データ・アナリティクス入門

数値と成長が紡ぐ学びの物語

代表値の使い分けは? 今回は、実際に数字に集約して捉えるという観点から、代表値と標準偏差について学びました。代表値には、単純平均、加重平均、幾何平均、中央値が存在し、それぞれの違いを意識しながら適切に使用することの大切さを再確認できました。 数値の視覚化は? 業務上は、主に標準偏差をグラフ上で確認する形で活用しています。ただし、数値として厳密に扱っているわけではなく、視覚的なデータとして捉えています。また、幾何平均については、Excel関数を利用して計算することが多いです。 成長率評価はどう? 一方で、個人の成長率を評価する際に、回答年や回答抜け年、最初と最終の回答年がバラバラなため、アナログな方法で関数を適用している現状があります。より効果的な方法があれば、ぜひ知りたいと思っています。

アカウンティング入門

数字が語る企業戦略の秘密

企業の財務はどう? 企業の目的や理念、ビジネスモデルが財務諸表に如実に表れていることを、今回の学びを通じて実感しました。特に、損益計算書(P/L)や貸借対照表(B/S)を読み解くことで、企業がどのような狙いや戦略を持っているのかが明確に浮かび上がると感じました。 費用増加の背景は? また、現状では売上に比べ販管費のコストが大きく、営業利益を圧迫している問題が存在しています。具体的には、在庫が積み上げられることで固定資産の割合が増し、その結果、減価償却費が膨らみ、販管費も増加してしまっている状況です。見込んだ売上が達成できないことが根本原因と考えられるため、この状況を打破するためには、値上げや利益率の低いサービスの見直しといった対策が有効だと考えています。

戦略思考入門

ROIの数字で実務を再考する

数字評価の意味は? ROIを数字で評価することで、状況が非常に理解しやすくなったと感じます。特に、技術戦略提案書などの背景構築にどのように反映できるか、実務で検討してみたいと思います。 投資対効果ってどう? 一方、ROI「投資対効果」だけで優先を決めるのは、必ずしも最適とは言えないという疑問も残りました。自身の業務については、これまで投資対効果を意識したことがなかったため、改めて工数実績から計算し、優先順位を見直す必要があると考えています。 捨てる選択はどう? また、ROIは捨てる選択を判断する際には有用だと感じた一方で、ROIのみで優先すべき項目を決めた場合に上手くいくかどうかには、やはり懸念が残りました。

データ・アナリティクス入門

平均だけじゃない!データの真実

平均と偏差の活用は? データ集団の分析においては、どの平均値を採用するかが重要です。数字の性質を把握するために、平均だけでなく標準偏差を確認し、データのばらつきを評価することが大切だと感じました。なお、エクセルには標準偏差の計算関数が用意されているため、計算の手間はかからず助かっています。 仮説と切り口は? 業務で数字データを扱う場合、まず目的と仮説を明確にし、その上でどこから切り口を作るかを整理して分析することが必要です。単に数字を断片的に眺めるのではなく、全体の流れや構造を意識してデータを読み解くよう努めています。

「数字 × 計算」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right