データ・アナリティクス入門

多角的視点で広がる戦略の可能性

多角的視点は有効か? フレームワークの各視点を取り入れることで、仮説の幅を広げることができるとの示唆が非常に印象に残りました。たとえば、問題解決の4つのステップや、事業戦略の分析で利用される3C、サービス検討の4Pといった多角的視点を活用することで、より網羅的な分析が可能になります。 仮説の見直しは必要? 一方で、これまでキャンペーンの仮説を立てる際には、十分な視点を持たずに取り組んでいた自分に気付かされました。今後は、複数のフレームワークを意識的に取り入れ、仮説同士に網羅性を持たせることを心がけたいと思います。 継続検証で進化できる? また、複数の仮説を立て、継続的に検証を繰り返すことで、ABテストにおいて有意な差を見出せると期待しています。自分が企画するキャンペーンの成功に向けて、どのフレームワークが活用できるかを検討することが、今後の課題となるでしょう。

デザイン思考入門

試しながら感じた生成AIの可能性

業務活用はどう進む? 生成AIを業務に活用する動きが進む中、まずは自分の業務で試してみることが大切だと感じています。たとえば、直近ではOpenAIの新しいモデルに関して、ハルシネーション率が高いとされるため、o4-miniを使ってその数値を表にまとめる取り組みを行いました。 混在は何故起こる? しかし、OpenAIのモデルであるにもかかわらず、GPT-4o-miniとo4-miniが混在した表が作成され、そのままでは利用できない結果となりました。ベンチマークでは高いスコアが出ているものの、正確性の面では改善の余地があると実感しました。 試行の価値は? また、生成AIは手軽に試すことができるため、積極的に利用する価値があると感じています。さらに、AIエージェントやGraph RAGといった技術も提案されており、これらを自分自身で実践することが重要だと改めて認識しました。

アカウンティング入門

身近なビジネスを見てPL・BSを学ぼう!

PLとBSはどう反映される? ビジネスモデルが損益計算書(PL)や貸借対照表(BS)にどのように反映されるかを、実例を通じて具体的に理解することができました。例えば、企業が従業員に支払う人件費が原価として計上されることは、その企業がどのような価値を提供し、どのようにして売上を得ているかを考える良い事例です。 日常のビジネスはどう見る? 日常生活で目にしたり利用したりする飲食店や鉄道会社、金融機関のビジネスモデルを理解しようと思います。それらを分かりやすく整理し、家族にも伝えられるようになればより深い理解につながると考えています。 利益はどう生み出す? まずは一週間の中で自分の周りにあるビジネスをリストアップしてみます。それを事業別に分類し、どのように利益を生み出しているかを分析します。そして、整理した情報を三週間後の週末に子どもたちにクイズ形式で伝えようと思います。

データ・アナリティクス入門

集めて比べる、学びの第一歩

ライブ授業をどう捉える? ライブ授業を通して、分析においては「比較」が非常に重要であると改めて実感しました。限られた情報の中で考察を進めると、様々な視点が生まれる一方で、正確な回答を導き出せない場合もあることが認識できました。 データ準備の確認は? データ分析を実施する際には、まず必要なデータをしっかりと揃えることが不可欠だと学びました。新しいシステムの導入を検討する場合、価格、使用頻度、使用者の経歴、最も利用される時間帯など、複数のデータを準備し、事前に確認すべきポイントを絞り込む必要があります。 集計と比較はどうする? その上で、まずは確実にデータを集め、その後に集めたデータを比較しながら、必要な情報や懸念点を検討していくことが大切です。さらに、足りない情報がないかを意識しながら、新しいシステムに求められる要素を見極めるプロセスの重要性を再認識しました。

データ・アナリティクス入門

比較が切り拓く使いこなしの未来

比較って何が重要? 分析というと、難しい数字を使った調査と思われがちですが、本質は「比較」であると学びました。比較は、目の前にあるもの同士だけでなく、目的に応じて見えていない要素も想像して行う場合があります。 活用状況はどうする? プロダクトにおける顧客の活用状況では、十分に使いこなせていないケースの課題を抽出し、もししっかり活用できた場合のシミュレーションを定量的な数値で示すことが重要です。こうして、利用促進のきっかけを提供すると同時に、プロダクト自体の改善点にも繋げられると実感しました。 目的はどう定める? また、比較対象を決める際には、分析の目的と照らし合わせながら選定することの大切さを学びました。私自身、問題が発生した時に手段に頼りがちな傾向がありますが、今後は目的を明確に定義し、しっかりと把握する意識を一層高めていきたいと思います。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

クリティカルシンキング入門

読み手を惹きつける資料作りの秘訣

スライド作成の極意とは? スライドを作成する際、読み手が情報をどの順番で受け取るかを意識することが、意図した内容をより効果的に伝える鍵であると学びました。また、強調したい部分に合わせた色使いやフォントの工夫が、ポイントのハイライトに役立つことを実感しました。 資料作りはどう変わる? これらの知見は、プレゼンテーションスライドだけでなく、普段利用しているメールや文書共有ソフトを使った資料作りにも応用できると感じています。 説明資料の秘訣は? 説明資料を作成する際は、まず伝えたい内容を明確にすることが重要です。以前の学習でも、理由を裏付ける根拠を整理し、情報をどの順番で伝えると理解されやすいかを考える手法が紹介されており、非常に参考になりました。特にハイライトしたい部分については、体裁にこだわることで、より効果的な伝達が可能になると理解しました。

クリティカルシンキング入門

振り返りで見つく、新たな学びの扉

ビジュアルで魅せるには? アイキャッチなどのビジュアル要素を活用することで、文章や提案書をただの情報羅列ではなく、読む人の興味を引くものにできると学びました。こうした技法を知らないと、どの部分をどのように工夫すれば見やすくなるか分からず、結果として読み手に退屈な印象を与えてしまうリスクがあると感じています。また、技術に精通している方からは、工夫が足りないと評価されるのではないかという不安もあります。 メールの工夫はどう? 毎日のメール文面作成においては、最近AIを利用することで、最低でも60点以上の出来栄えが得られていると実感しています。しかし、最終的には私自身がタイトルや内容に目を通し、読者の興味を惹く配慮がされているかをしっかり確認する必要があると学びました。同時に、メールを送る目的や狙いを明確にすることの大切さを改めて実感しています。

データ・アナリティクス入門

数字が導く成長物語

平均と中央値の必要性は? 平均と中央値は必ず確認するようにしていました。普段は数字を多く扱わないため、加重平均や標準偏差を使うケースはほとんどありませんでしたが、数が多い場合にはこれらを用いることもあり、特に違和感は感じませんでした。 意見共有は効果的なの? 日頃から行っている手法ですが、最近は大規模な数値を扱う機会が少なく、現状ではあまり活用できる場面が想定できません。しかし、他者と同じ観点で意見を出し合うためには、この考え方を共有することから始めるのが効率的だと考えました。 グラフ形式を再考すべき? また、いつも同じ形式のグラフを使いがちだったため、より適切な形態を再度検討してみるのも良いと思いました。一時期はヒストグラムを多用していたものの、ここ数年は使用していなかったので、今後改めて利用してみたいと感じています。

クリティカルシンキング入門

実務で活きる!効果的な問いの立て方

初動で何を押さえる? 取り組むべき問いについて、最初の一歩からずれてしまうと、異なる論点へ進んでしまう可能性があります。したがって、組織やチーム全体で方向性を共有することが非常に重要だと感じました。イシューを特定するためには、問いを明確にし、具体的に考え、一貫して押さえ続けることが大切です。 採用手法の見直しは? 実務においては、新卒採用や中途採用の手法について検討する際、キャリアフェアの動員数を増やすことだけに固執せず、イシューがどこにあるのか、そして他に利用できるチャネルを探求していく視点が重要だと学びました。 採用効率向上の方法は? はじめに、どのような手法が考えられるのかリサーチし、それを書き出してみます。そして、ターゲット層を分析し、具体的にどのような行動が採用効率を向上させるのかを検討していきたいと思います。

データ・アナリティクス入門

数字の裏側に広がる発見

データ分析ってどう? 平均だけでなく、分散や標準偏差も組み合わせることで、分析対象を正確に把握し、誤った結論に至らないように努める必要があると感じました。加重平均を適切に利用するほか、ビジュアル化によってデータの様子を把握しやすくすることが、説得力のある分析には重要です。 人事評価はどうなる? また、人事領域では、様々な属性を持つ対象を扱い、各属性の人数が限られている場合もあるため、信頼性のある数値を導き出すには、加重平均や標準偏差の手法が必要不可欠だと考えました。 数値整理のコツは? これまでの講義で学んだ分析対象を要素に分解し整理する手法を活かし、分析したい要素に応じて正しく数値化できる状態を目指します。そのためには、これまで集計した数値に標準偏差を導き出し、改めて整理することが重要だと実感しています。

マーケティング入門

実践から学ぶ!顧客志向の革新

顧客理解はどう進む? 顧客志向の重要性を改めて認識する機会となりました。利用者と意思決定者が異なる場合でも、実際に購入するお客様の意図を正しく理解することが、効果的なマーケティング戦略の構築に不可欠だと感じました。 価値は何で感じる? また、顧客が感じる価値には、機能的価値、情緒的価値、体験価値の三つがあると学びました。これらの観点は、サービスや製品の提供方法を見直す上で、多角的なアプローチの必要性を示しています。 自社価値はどう映る? さらに、自社が提供しているサービスや従業員向けマニュアルがどのような価値を生み出しているのかを再確認すること、そしてSNSなどを通じて自社の取り組みが世間でどのように受け止められているかをリサーチすることにより、自社が今後提供したい価値について深く考える大切な時間となりました。

「利用」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right