データ・アナリティクス入門

実践で切り拓く学びの扉

A/Bテストは何が見える? A/Bテストは、2つの施策を比較し、どちらがより適しているのかを実際のユーザー行動に基づいて判断する有効な手法です。アメリカ大統領選などの大規模な事例でも用いられている点が印象的で、仮説だけでなく実績に裏打ちされた評価がとても参考になりました。 演習で何を実感した? また、演習を通じて、問題の各要素をステップごとに分解することで、どのデータを抽出すればよいかが具体的に見えてきます。こうしたプロセスは、原因の特定を容易にし、問題解決に向けた新たな視点を提供してくれました。 業務再構築はどう進める? 社内業務の再構築にあたっては、まず課題を洗い出し分類した上で、それぞれの課題のどこに原因があるのかを要素ごとに分解して検証する方法が効果的だと感じました。Howに飛びつく前に、What、Where、Whyの各段階を踏むことで、より論理的に解決策を見いだすことができると思います。 原因探しで見つけたヒントは? さらに、課題に対する取り組みでは、要素を段階ごとに書き出す過程が、問題自体の理解を深め、原因の特定に大いに役立ちました。その後、適切なフレームワークを用いて目的に沿った仮説を立て、多角的な視点から検討することで、より実践的な解析が可能になると実感しました。

戦略思考入門

戦略をシンプルに!目的達成の鍵

戦略の本当の意味は? 「戦略」という言葉について考えを深める中で、自分がそれを曖昧に捉えていたことに気づきました。難しく考えすぎると頭に入りにくいので、戦略とは「目的・目標をラクに達成するためのもの」や「やること・やらないことを選ぶこと」と解釈しました。この考えに基づくと、目的・目標の設定が今まで以上に重要であることがわかりました。 IT部門の悩みは? 当社のIT部門も他社と同様に、計画済みの重要テーマに加えて経営や事業からの緊急案件が絶えず降りかかり、質・量の両面でメンバーへの負担が大きくなっています。そこで、社会や当社事業の状況を前提条件として受け入れつつ、メンバーが心身ともに健康で持続的に働ける組織を作るための運営戦略を確立したいと考えています。 研修後の見直しは? 研修を終えた後には、まず以下のことに取り組みたいと思います: - 当社のIT部門の当面の役割・目的・目標を再評価し、明文化する。 - ミッションを効率的に達成する方法や、やらなくても良いことを構造的に考え、書き出す。 毎日の行動の意義は? さらに、日々の行動としては次のことを徹底していきたいです: - 「やらない」という選択肢を常に意識する。 - これまで以上に目的・目標の設定を重要視する。

マーケティング入門

ターゲットを捉える戦略の秘密

セグメントは正しい? セグメントについては、事前に持っていた認識が正しかったと感じています。市場評価基準(6R)の考え方を理解し、一人の中にも状況や場面によって多様な個性があることから、ターゲティングを行う際には背景やシーンを明確にする重要性を実感しました。 訴求はシンプル? ポジショニングに関しては、訴求ポイントを2つに絞えるという考え方が有効だと学びました。実際、ポジショニング後も顧客からどのように見えているかを客観的に把握し、状況の変化を常に観察する必要があると感じました。 強みは複合的? また、自社の強みを複合的に掛け合わせる可能性についても考えました。これまで紹介事業で培ったサポート力を、転職活動中の方だけでなく、前工程・後工程や転職市場以外の分野でも活かすことができないか、検討する価値があると捉えています。 誰に届ける? さらに、新ブランドを立ち上げる際の訴求ポイントの整理にも注目しました。社員それぞれが感じる自社サービスの強みを洗い出し、現状のターゲットのペルソナをより具体的に言語化することで、「誰に向けたサービスなのか」を再設定し、その上で強みのどの部分が当てはまるかを検討していきます。こうした取り組みは、SNSのショート動画などのコンテンツ作成にも応用できると考えています。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

リーダーシップ・キャリアビジョン入門

フィードバックで成長を促すコツ

フィードバックの心得は? フィードバックを行う際には、慎重な心構えが求められます。特に評価が低い場合には、納得感を持ってもらうことが重要です。フィードバックを受けた相手のモチベーションを維持し、未来に向けた前向きな気持ちを引き出すためには、相手の心情に配慮した言葉選びと表情が大切です。また、具体的な事実や数字を提示することで、現在の達成度を明確にし、納得感を高めます。 低評価はどう伝える? 低評価を伝える際には、批判するのではなく、成長を促すスタンスを心掛けましょう。フィードバック後には、受け手が今後取り組むべきことを明確に理解し、前向きな気持ちで面談を終えられるよう目指すことが重要です。自己評価と異なる意見を伝える際も、アプローチ次第で結果を大きく変えることができると信じて、メンバーと向き合いましょう。 年上部下への伝え方は? 経験豊富な年上の部下を持つ場合には、大きなハレーションを避けるため、アプローチに一層注意を払う必要があります。しかし、リーダーとしての役割を果たし、組織や顧客のために必要なことは率直に伝えることも求められます。相手へのリスペクトを忘れず、組織の発展に貢献するために何をすべきか、しっかりと考えを持ちながら部下とのコミュニケーションや1on1面談に臨みたいと考えています。

デザイン思考入門

スピードでカタチに!学びの実験

前職はなぜ意義ある? 前職ではSEとしてプロトタイプを作成し、フィードバックを受け取るサイクルを繰り返していたことを思い出しました。現在の業務では同じような機会は少ないですが、その経験を活かし、使用中のツールの改修や新規作成に取り入れていきたいと考えています。また、モノ作りのみならず、業務フローの改善にも生かす意欲があります。 フィードバックの鍵は? 実践までは至っていませんが、実践演習を通して、まずアイデアを形にし、ユーザーからのフィードバックを受けるそのプロセスの繰り返しが、よりユーザーが求めるものを作り出す鍵であると感じました。さらに、プロトタイプの種類によって得られるフィードバックが異なるため、何を目的にするのか、現在のフェーズはどこにあるのかを踏まえた上で、プロトタイプの作成と検証を進めることが重要だと考えています。 スピードはなぜ大切? とにかく、形にすること、そしてスピードが大切であると実感しています。形にすることで自分の考えが整理され、ユーザーやメンバーからコメントやフィードバックを得やすい状況が生まれます。そのサイクルをスピーディーに回すことが成果につながると感じました。また、ユーザーテスト前に評価基準を設定しておくことで、課題を見失わない工夫も大切だと実感しました。

クリティカルシンキング入門

議事録作成のコツを学んで活かす

文章をわかりやすくするには? 文章が相手に伝わるポイントとして、私は以下の三つを学びました。 まず、主語と述語を明確にすること、次に文章を評価すること、そして手順を踏んで書くことです。特に、手順を踏む部分ではピラミッドストラクチャーを用いた理由づけが有効であることを学びました。具体的には、イシューを設定し、柱を作り、いくつかに分けて具体化するフレームワークを理解しました。 議事録作成で何を活かす? この学びを活かして、私は社内会議の議事録作成に取り組んでいきたいと考えています。私は社内会議で多くのファシリテーションを行い、同日中に意見をまとめ、議事録を作成して提出することがあります。会議ではイシューに関する意見だけでなく、その他の意見も多く出てきます。議事録では、これらの意見を整理し、参加者に正確に報告するとともに、抜け漏れがないかを確認してもらう必要があります。 分かりやすい議事録の目指し方 今回の学習を通じて得た知識をもとに、分かりやすい議事録作成を目指します。イシューを出発点として、それに対する柱、具体化した内容を整理し、読みやすく伝わる議事録を作成したいと考えています。また、相手に内容が正しく伝わっているか、漏れや誤解がないかをしっかり確認しながら進めていきたいと思います。

データ・アナリティクス入門

データが照らす学びの軌跡

データ比較の意味は? データの比較を通して、その意味合いを見出す手法として、数字に集約する方法とビジュアル化する方法の2つのアプローチがあることを学びました。 代表値の選び方は? 数字に集約する手法では、まず代表値に着目します。代表値としては、単純平均、加重平均、幾何平均、さらには中央値が挙げられます。また、データのばらつきを評価するためには標準偏差を利用するのが有用です。どの手法を採用するかは、単に数値を並べるのではなく、各数値が持つ意味合いを十分に考慮した上で、目的に見合った適切な評価方法を選択することが重要です。 評価手法は何だろ? 成長率や進捗率の評価では、場合によっては幾何平均が適していることもあります。ただし、実際の業務においては、単純平均や標準偏差による評価が一般的に用いられるケースが多いです。評価の目的やデータの意味合いによっては、中央値や幾何平均も選択肢に入れて、適切な評価手法を考慮する必要があります。 グラフ選びはどうする? また、データのビジュアル化にあたっても、まずその目的を明確にし、適したグラフなどの表現方法を検討することが大切です。目的に合わせたデータの加工や表示の手法を選ぶことで、情報をより具体的かつ分かりやすく伝えることができると実感しました。

データ・アナリティクス入門

要素分解が開く学びの扉

分解と分析はどうする? 分析を行う際は、まず対象を要素に分解することが重要です。ロジックツリーやMECEの考え方を活用し、問題解決のステップとしてWhat、Where、Why、Howに分けることで、あるべき姿と現状、そして現状と理想のギャップを正確に把握できるよう心がけています。 店舗のギャップは? また、実務の現場では、宿泊客のデータ比較や社内の研修で、グループ内の各店舗のありたい姿を設定し、現状とのギャップを店舗ごとに分析する取り組みが行われています。このような分析により、各店舗の改善点が明確になり、実効性のある対策が立てられるようになっています。 研修資料はどう整える? さらに、新入社員向けの研修資料作成においてもMECEを意識し、内容を整理することが求められています。現状、社内向けの資料が十分に整備されていないため、今回学んだことを活用して、より実用的で分かりやすい資料作りに努めています。 口コミ低評価をどう克服? 口コミ評価が低い店舗を訪問する場合、現状とあるべき姿のギャップを3つ以上洗い出し、具体的な改善点を見つけることが求められます。初回の動画視聴だけでは本質を理解しきれないため、何度も視聴しながら自分の手でメモを取ることで、理解と記憶の定着を図っています。

データ・アナリティクス入門

仮説×分析で開く解決の扉

仮説立案の基本は? 仮説には、結論に至る仮説と問題解決に焦点を当てた仮説の二種類があり、問題解決の仮説では「What(問題は何か)」「Where(どこに問題があるか)」「Why(なぜ問題が発生しているのか)」「How(どうすべきか)」の順序で検証することが基本と学びました。 フレームワークは効く? また、仮説を立てる際には、3C分析(市場・顧客、競合、自社)や4P分析(製品、価格、場所、プロモーション)といったフレームワークの活用が有効で、これにより具体的かつ詳細な仮説を構築しやすくなると理解しています。 効果検証はどう? 現在、交通系ICカードで決済するとポイントが10倍になるキャンペーンの効果検証に取り組んでおり、決済回数や決済金額の増加などを評価指標としています。この分析に際しては、問題解決の仮説を立て、3C分析や4P分析を積極的に取り入れることで、データ分析の精度を向上させることを目指しています。 分析精度を上げるには? 所属部署では専門のデータ分析担当者がおらず、これまで独学で自己流に分析を行ってきました。今回学んだ仮説の立て方やフレームワークをさらに活用し、数値の取り方や検証方法を体系的に整理することで、分析の精度を一層高めたいと考えています。

データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

「評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right