データ・アナリティクス入門

分類の新視点、成功への一歩

分析とは何? 「分析=分類」という視点は、データ分析の本質を捉える上で非常に重要だと感じました。膨大な情報をそのまま扱うのではなく、目的に応じて比較可能な形に分類・整理することが、分析の第一歩であると認識しています。また、「分析とは比較なり」という言葉が示すように、異なる要素や時点を比較することで、初めて傾向や違いが明確になっていく点も学びました。 目的はどう明確? さらに、分析には明確な目的が必要であり、仮説を立てて検証するサイクルを回すことが、意味のある結果を得るために不可欠だと実感しています。この考え方は、数値の単なる把握に留まらず、どの部分を改善すべきか、どうすれば成果が上がるのかといった具体的な施策検討へとつながるものであり、今後の業務に積極的に取り入れていきたいと考えています。 講座促進策はどう? また、データ分析の知識は、当社が推進している講座の受講促進において大いに活かせると期待しています。具体的には、対象となる教育機関や宿泊業界における研修実績や予算、過去の導入事例などを定量的に整理・分析することで、より効果的な提案資料の作成や、営業の優先順位付けが実現できると感じています。さらに、各施策ごとの反応や申込数などを時系列で可視化することで、PDCAサイクルの精度向上にも寄与するはずです。 ターゲット抽出はどう? まずは、教育機関や宿泊業界の人材育成に関するデータ収集から始め、公開情報や補助金制度、業界レポート、ヒアリングを通じて得た情報をExcelで整理します。次に、予算規模や研修回数などの傾向を数値化し、明確なターゲット層を抽出していきます。その上で、ターゲットごとのニーズに合わせた提案資料を作成し、営業活動に活用する計画です。また、講座紹介の販促施策における各種反応率を記録・比較し、次回以降の営業活動の改善点を把握できるようにしていきたいと考えています。 継続学習はどう進む? 今回学んだ知見を踏まえ、まずは小さな一歩を着実に進めながら、継続してデータを扱う習慣を身につけ、業務の中で活用していく所存です。

アカウンティング入門

無借金経営の光と影を探る

B/Sから見える経営の違いは? B/Sから、資金の調達方法や運用方法によりビジネスモデルの違いが浮き彫りになることを学びました。例えば、無借金経営の場合、借入金や利息の支払いがないため一定の安心感はあるものの、十分な利益が上がらないと資金繰りが悪化し、次の成長戦略への投資が制限されるリスクがあると理解しました。(具体例として、広告宣伝費やメニュー開発費などが挙げられます。) 営業サイクルはどう理解? また、営業サイクルについては、「仕入→製造→在庫→販売→回収」という一連の流れを再認識し、企業経営における基礎としての重要性を感じました。さらに、業種によって流動資産と固定資産の比率が異なるなど、企業ごとのビジネスモデルに基づく資産の配分の違いも理解できました。 B/Sの違いをどう捉える? 総評として、B/Sを通じた資金調達と運用の違いの理解は非常に有益であり、無借金経営のメリットとデメリットを考慮する視点が印象的でした。また、異なる業種間でのB/Sの違いを具体的に考えることで、ビジネスモデルへの理解が一層深まったと感じています。 無借金経営のリスクは? 今後は、無借金経営における成長戦略の制約をどのようにリスク緩和していくか、また、流動資産と固定資産の割合がビジネスにどのような影響を与えているかについて、さらに詳細な分析を進めたいと考えています。 新規事業計画をどう策定? 新規事業戦略においては、コストや利益構造、資金調達方法について仮説を立て、しっかりとした事業計画を策定することが重要です。どこに資金を投入し、どこで費用を抑えるべきかを明確にし、場合によっては事業構造の見直しや撤退も検討する必要があります。 収益性向上の対策は? まずは現状の把握を行い、その上でコストや利益構造の見直しを実施し、収益性の高いビジネスモデルの構築を目指します。具体的には、ステークホルダーとの業務分担や売上分配率の調整、社内のマンパワーと外注費のバランス、さらにはスキームや手数料の見直しを、今期中に実行する計画です。

データ・アナリティクス入門

数字とグラフで見える成長

比較や仮説の意義に迫る? 本教材では、比較や仮説思考の重要性を改めて確認しました。大量のデータを扱う際、数字化しグラフなどで可視化することで、情報がより明確に把握できることが示されています。 代表値はどう選ぶ? 代表値として、単純平均、荷重平均、幾何平均、そして中央値が挙げられました。それぞれ、状況に応じた使い分けが必要です。たとえば、ばらつきが大きい場合や外れ値がある場合には中央値が適している一方、成長率などの変化割合を捉えるためには幾何平均が有効です。 標準偏差を理解する? また、データのばらつきを理解するためには、標準偏差が重要な指標となります。標準偏差は、平均値との差の二乗和の平均の平方根として計算され、数値が小さいと密集、大きいとばらつきがあることがわかります。正規分布の場合、平均値から標準偏差の2倍以内に約95%のデータが収まるという2SDルールも、実感としての起こりにくさの目安となります。 グラフの効果は何? まとめとして、代表値とばらつきを用いてデータの特性を把握し、グラフなどの可視化を利用すると、非常にわかりやすく情報を整理できることが強調されていました。具体例を用いた説明は非常に効果的で、内容が実践的に応用できる点も評価されます。 荷重平均の活用は? さらに、データ可視化の具体的な利点や、実際の場面で荷重平均をどのように活用するかについて、さらに考えを深める問いが提示されています。これにより、自らの分析手法を実践的に応用する視点が求められています。 実務でどう活かす? 最後に、実務への応用例として、メンバーの時間外労働の管理が取り上げられました。労働時間が所定の範囲内に収まるよう、グラフを用いて傾向を把握する方法や、外れ値がある場合に特定の商品のデータを除外して全体の傾向を見る手法が紹介されました。また、エクセルを活用して各メンバーの代表値やばらつきを算出し、分析の特性に応じた手法が使われているかを確認することで、より実践的なデータ分析支援に繋げる取り組みが示唆されています。

データ・アナリティクス入門

データ活用で広がる戦略の可能性

平均概念は何を表す? これまで何となく使用していた「平均」の概念が、データの代表値を示すためのものだと理解が深まりました。代表値の考え方を知ったことにより、平均以外のデータも考慮し、データの分布(ばらつき)に着目することで、より効果的な分析ができる可能性が広がりました。 データ比較はなぜ大切? データ分析においては、他のデータと比較することでその意味合いを引き出すことが重要です。そのため、データの特徴を一つの数字に集約したり、グラフなどのビジュアル化によって視覚的に捉えたりする方法があります。 中央値とばらつきの違いは? 数字の特徴を捉える手段には、データの中心を示す方法とデータのばらつきを示す方法の2つがあります。データの中心を示す方法としては、単純平均、加重平均、幾何平均、中央値があり、ばらつきを示す方法としては、標準偏差が用いられます。データのばらつきは主に正規分布に従い、正規分布では標準偏差の2倍の範囲に全体の95%が収まるという2SDルールがあることが分かっています。 なぜグラフが効果的? データ分析のアプローチには、グラフ、数字、数式があります。特に、グラフはビジュアル化による情報伝達の手段として有効です。 どう鋭い問いを引き出す? これまでのデータ活用では単純平均や加重平均が主に使われてきましたが、幾何平均や中央値、標準偏差を活用することで、より鋭い問いや回答が得られる可能性があります。特に、データのばらつきを分析することで、分布ごとの傾向が明らかになり、自分の製品原価分析に応用できる予感があります。 レポートで戦略を描く? 現在、私は上半期の業績分析のレポートにおいて、売値と製造原価の比率や製品1つあたりの売上単価の分析を進めています。これまでのように平均のみを算出するのではなく、ヒストグラムなどを用いてデータのばらつきを考慮することで、価格帯ごとの相関関係も取り入れたレポートを作成し、再来週までに提出する予定です。このレポートが今後の販売戦略立案に貢献することを期待しています。

クリティカルシンキング入門

視点を広げる新しい思考の旅

自分の頭、どう使う? クリティカルシンキングにおいて重要なのは、自分自身の思考を客観的に見つめ、「もう一人の自分」を育てることです。人は無意識のうちに「制約」や「偏り」に誘導されやすいため、物事を俯瞰的に捉える力が求められます。これには、視点・視座・視野の広さが必要です。「頭の使い方を知る」ということが大切であり、これがクリティカルシンキングの本質です。 過去の選択は? 以前の私は、顧客から提示された「課題」に対して深堀をし、本質的な問題を見つけ出せることもありました。しかし、過去の経験や「従来の対応方法」に縛られていた場面が多々あったことを反省しています。これに対処するために、多くの関係者とコミュニケーションを取り、全体を把握するよう努めていました。しかし、今回学んだことから、「課題」を解決すべき問題として捉える前に、まず全体を俯瞰的に見渡し、真の課題を把握することが重要であると再認識しました。このようなアプローチを習得するのは時間がかかるかもしれませんが、より効率的な解決策を見つけるために、物事を客観的に見る姿勢を身につけたいと思います。 本当の問いは? 初めの一歩として、自分自身への問いかけを意識していきたいです。 1. 常に客観的に物事を見るよう心がけること - 提示された課題は本当に解決すべきものか? - これを検討する目的は何か?それを明確にした上で考える。 - 全体を見渡せているかを確認する(視点・視座・視野)。 - 自分の意見の根拠は何か?偏りや制約がないか検証する。 - その考えは直感や経験値に依存していないか、証明できるか? 2. 具体的でわかりやすい表現を心がける - 専門用語を多用しない - 誰にでも理解しやすい表現か - 必要以上に抽象的でないか - 問題がすり替わっていないか このように、自分自身への問いかけと具体的でわかりやすいコミュニケーションを通じて、より効果的なクリティカルシンキングを磨いていきたいと思います。

クリティカルシンキング入門

小さな数字の分解、大きな気づき

数字分解はどう考える? 数字を分解するという手法について学びました。まず、数値をWhen、Who、Howなどの要素に分ける際、①加工の仕方、②分け方の工夫、③分解の留意点に注意することが大切だという点を実感しました。たとえ分解した数値からすぐに有用な情報が得られなくても、それ自体が分け方に工夫が必要であるという気付きにつながります。 切り口は何が鍵? また、複数の切り口を見出すためには、目的や立場を踏まえて仮説を立てたり、データを表やグラフで表現してみることが効果的であると感じました。たとえば、ある施設の入場者数の減少を分析する際、切り口を4段階に丁寧に分けることで、減少の実態をより正確に把握し、次のアクションにつなげる経験が非常に印象に残っています。 MECEをどう活かす? MECEの考え方も学びました。全体を適切に捉えるためには、①全体集合体を部分に分ける(足し算)、②変数で分ける(掛け算・割り算)、③プロセスで分けるという三つの観点があること、そして問題解決のプロセスとしてWhat、Where、Why、Howの要素があることを再確認しました。重要なのは、まず全体を定義することだと感じました。 なぜなぜ分析は? 業務上の問題や課題解決に取り組む際、これまで自分の経験に基づく思い込みが原因となってしまうことに気づかされました。従来使用していたなぜなぜ分析は主観的な原因追及に陥りがちでしたが、今回学んだプロセスに基づいた分解手法で、より客観的に問題箇所を特定できると実感しています。 業務改善はどうする? 今後は業務において、GW明けから数字を分解する際に、①加工の仕方、②分け方の工夫、③分解の留意点を意識しながら進めていく予定です。実践を重ねる中で、常に複数の切り口で分析できるスキルの向上を目指し、既存の切り口が最適かどうかを検証しながら思考を鍛えていきます。また、MECEの考え方についても、モレがなくダブりがないかを確認しながら、業務に定着させられるよう努めていきたいと感じました。

データ・アナリティクス入門

振り返りから導く次の一歩

数字で全体像を? まず、業務やレポート作成において、まずは数字を俯瞰して全体像を掴むことが大切です。比較しながらどの部分に差があるのかを見極め、その差が良いのか悪いのかを判断する、この基本的な現状把握のプロセスは非常に重要です。その際、大切なのは数字を正しく読み取り、自分の固定概念や先入観にとらわれずに客観的な視点を保つことです。 改善策は何故必要? 次に、改善策を検討する時は、原因についてできるだけ多角的に洗い出すことが求められます。さまざまな角度から原因や背景に目を向け、徹底的に分析することが、より実効性のある対策につながります。そして、対策を決める際には、目指す「あるべき姿」を明確にする必要があります。一見抽象的に聞こえるこの目標ですが、具体的な数字や例を挙げることで、現状とのギャップや将来への差異がより分かりやすくなると思います。たとえば、ある地域で学生数がトップになる学校を目標とする場合、現状との違いを具体的に示すことで、方針書や会計資料にも説得力が生まれるでしょう。 情報伝達はどうして? また、日常の業務報告資料や案件ディスカッションの際には、相手に理解してもらうための工夫が必要です。例えば、MICEの視点やロジックツリーといった手法は、情報を論理的かつ整理された形で伝えるのに役立ちます。社内で進めている施策の背後には、必ずあるべき姿とのギャップが存在しており、そのギャップを埋めるための取り組みであると考えながら、経営層の視点も取り入れて検討することが重要です。 なぜ意識して整理? 普段の業務—電話、メール、立ち話など—においても、意識して考えを整理する習慣が役立ちます。私自身は、考えを紙に書き出して見える化し、その内容を仲間と共有することで、抜け漏れや重複をチェックしています。一人で行動する限界を感じるときは、複数の視点や他のメンバーからの意見を取り入れることを忘れません。こうすることで、自分の考えに固執せず、より広い視野で状況を捉えることができると実感しています。

データ・アナリティクス入門

データ分析で見抜く!成功の秘訣とは?

代表値や散らばりは? 今回の学びでは、データ分析における重要なポイントを整理しました。まず、定量分析を行う際には、「代表値」と「ちらばり」の両方を把握することが重要です。代表値には、単純平均や加重平均、幾何平均、中央値があり、それぞれの特徴を理解することでデータの中心を捉える手助けになります。また、平均値を算出する際には、外れ値の確認が不可欠です。ちらばりには、標準偏差や正規分布があり、それらを活用してデータの散らばり具合を把握します。さらに、データをビジュアル化することで、特徴的な傾向が捉えやすくなりますが、その際には正しいグラフを選択することが求められます。 相関か因果か? 次に、相関関係と因果関係の分析についてです。相関とは二つの要素がどのように関連しているかを示すものであり、因果関係とは原因と結果の関係です。これらをセットで分析し、次の打ち手を考察することが重要です。しかし、因果関係は誤認しがちであるため、自分の都合の良い分析結果に偏らないよう、常に意識して考えることが必要です。 分析は比較ですか? 今回の復習では、分析とは比較であることを再確認しました。問から仮説を立て、データ収集を経て、それを検証するというプロセスを繰り返すことが基本です。インパクトやギャップ、トレンドなど様々な視点からデータを分析し、グラフや数値、数式を使うことが有効です。 ツール選択はどう? 現状では、時系列分析を多用しており、分析ツールとしてTableauやSPSSを利用しています。これにより、顧客データや売上データ、プロモーション費用などを扱っています。具体的な分析例として、まず相関関係の分析においては、売上とプロモーション費用との関連を見て、どのプロモーションが効果的であるかを判断することを目的としています。また、パレート分析では、顧客をグルーピングし、どの顧客が優良であるかを可視化しています。これにより、優良顧客の特徴を把握し、効果的な販促やプロモーション計画の立案に活かしていきます。

データ・アナリティクス入門

平均だけじゃわからない、データ物語

代表値の選定はどう? データ分析の学びで、まず印象に残ったのは代表値を考える際に、単純平均だけではなくデータのバラつきを十分に検討する必要がある点です。普段便利に使われる単純平均ですが、その値が適切な代表値になっているかは、データの分散や偏りを合わせて考えなければならないことに気づきました。具体的には、データの性質に応じた代表値として、加重平均や幾何平均、極端な値の影響を抑えた中央値など、さまざまな手法を学びました。 標準偏差はどう捉える? また、バラつきを評価するために、標準偏差(SD)や2SDの考え方を改めて認識することができました。統計的な手法を用いることで、人が感じがちな「恣意的な操作があるのでは」という疑念に対しても客観的な根拠を示すことができる点が非常に興味深く感じられました。2SDの範囲が極端な値を排除する役割を果たすという考え方には納得できるものでした。 評価の分散はどう見る? 業務では主に人事データや研修後のアンケート結果を扱う中で、10段階評価の平均値のみならず、標準偏差や中央値を併せて分析する重要性を再認識しました。例えば、講評の平均値がある数値であっても、評価が全体的に均一なのか、それとも高評価と低評価に二極化しているのかは、ばらつきの分析なしには判断できません。標準偏差が大きい場合は評価が分散し、逆に小さいと評価が平均近くに集中していることが明確になるため、データの分布や偏りを把握する上で非常に有用です。 集計手法はどう進める? この手法を実践するために、まずは研修のアンケート結果をExcelに集計し、標準偏差(STDEV.PまたはSTDEV.S)や中央値(MEDIAN関数)を計算します。次に、標準偏差が大きい場合にはヒストグラムを用いて評価の分布を視覚的に確認し、外れ値が全体に与える影響についても検討します。こうした分析を定期的に行うことで、研修の質や受講者の満足度について、従来の単なる平均値以上の具体的な洞察が得られると考えています。

アカウンティング入門

BSで見る会社の健康診断

BSって何を表す? 簿記を学んでいたとき、講義で「BSは会社の<体力>を表す」というフレーズをよく耳にしました。講義では、貸借対照表が事業のためにどのようにお金を使い、またどのように資金を集めたかをまとめたものだと説明され、企業が負債や純資産をどのように運用しているか、そしてその結果、事業を継続できる資産が存在するかどうかという経営の体力や体質を明らかにしていると理解しました。 事例で分かる資産の違い? さらに、事例として、固定資産が多い鉄道会社と流動資産が多いソフトウェア会社の違いを通して、事業内容により貸借対照表の構成割合が大きく異なることを実感しました。単に資産が多ければよいのではなく、負債や返済とのバランスが取れていることが重要であると感じました。そして、BSやPLの数字の比率からその企業のビジネスモデルを読み解くことができるという点が、非常に興味深かったです。当初は、「なぜ財務会計の講義であって、マーケティングのようにコンセプトが語られるのか」と疑問に思っていましたが、実はコンセプト=ビジネスモデルの根幹であり、会社の経営状況を把握する上で欠かせない視点であると再確認しました。 BSの学びはどう活かす? この学びを、①新規事業立案時や、②予算立案時に自社のBSを理解する際に活かしていきたいと考えています。過去には、部門内BSを参考にするに留まっていたため、全体像を正確に把握できていなかったと感じます。今後は、部門内だけでなく会社全体のBSを確認し、現状の経営体力を正しく理解した上で、各部門の資産と負債のバランスが取れた事業立案に取り組みたいと思います。 貸借表の全体像は? まずは、自社および競合他社の貸借対照表を比較し、構成割合を確認することで、BS自体に慣れることが重要だと考えています。いきなり細部を読み解こうとせず、ケーススタディのようにざっくりとした構成割合で全体像を把握し、その上でグラフ化などの手法を用いて全体を捉える力を養いたいと思います。

クリティカルシンキング入門

深掘り思考で見える新たな道

論理的思考はどう考える? 論理的思考とは、一度立ち止まり、様々な視点から物事を考え、問題の本質を捉えることです。ビジネスにおいては、思考の基礎や土台の質が成果につながるといえます。 クリティカルシンキングは? 一方、クリティカルシンキングとは、物事を適切な方法で、適切なレベルまで考えることを指します。この考え方を実践することで、これまで思いつかなかった新たな発想が生まれ、見落とされがちな機会や脅威に気づくことができます。また、相手の意図やその前提を的確に理解し、会議や議論を効果的に進めることが可能となります。結果として、よりよい意思決定ができ、説得や交渉、部下のコーチングにも役立ちます。 多様な意見はどう向き合う? 実際、チェーン展開を行う飲食業界の新事業部でSVを務める中、バックグラウンドの異なる同僚との意見対立が頻繁に起こりました。振り返ってみると、自他の思考の癖に気づかず、ただ自分の主張を通そうとしてしまったこと、また、適切な方法で適切なレベルまで物事を考えていなかったことが大きな欠点でした。サービス経験とキッチン出身という異なる視点から、問題への着眼点が正反対であったため、今後はお互いの思考の癖を把握し、問題の本質を共有しながら、ゴールを定め、適切なレベルまで議論を深め、より良い意思決定を目指していきたいと感じます。 自身の癖は見えてる? そのための具体的な取り組みとして、まずは自分自身の思考の癖に気づくことが重要です。問題を分解し、ロジックツリーにして可視化する中で、MECEの原則を意識し、「漏れなく・ダブりなく」考え抜くことが求められます。常に“もう一人の自分”を意識し、「だから何?」「なぜ?」「本当に?」と問い続ける姿勢を持ち、この作業から逃げず、丁寧に取り組むことが大切です。 アウトプットできるか? そして、アウトプットとして、紙に書き出すことや、他者に伝えることにより、フィードバックを得て思考を定着させていくことが効果的です。

戦略思考入門

学びと成長の経営ヒント

ビジネスの本質はどう捉える? ビジネスの本質とメカニズムの重要性を実感しました。ただなんとなく知っているのではなく、真に理解し、迅速かつ深く考える習慣を身に着けたいと感じています。 経済効果とリスクは何か? 企業規模や生産量が増えると、製品1個あたりの生産コストが逓減する、いわゆるシナジー効果に類似した現象があると理解しました。工場の稼働率向上により固定費や変動費の比率が下がるほか、サプライヤーからの原材料費のボリュームディスカウントなどの効果もある一方で、必ずしも経済性が向上するだけでなく、不経済が発生する可能性もある点に注意が必要です。特に、企業の合併や業務提携などの取り組みによってその効果が期待できると考えます。 ネットワーク効果はどう進む? また、ネットワーク経済性については、インターネット上のサービスや一般的なSNSの事例を通して、現代の経営戦略として推進すべき重要な要素であると理解しました。 経験曲線の意味は何か? 経験曲線効果に関しては、製品の累積生産量が増加するにつれて、1個あたりの生産コストが一定割合で低減していく経験則を学びました。これは、作業者の習熟度向上や生産工程、設備の改善などが生産性の向上に寄与するためです。人事の観点から見ると、知識やスキルを積み重ねることで、各担当者の業務効率や品質が改良され、全体のパフォーマンス向上につながると感じました。 業務向上の秘策は何か? 日常業務においては、メンバーの業務に関する品質、生産性、業務のスピードを向上させるため、現状のスキルや知識を整理しながら、コーチングを通して個々の成長を促していく必要があると実感しています。その結果、部署全体のパフォーマンスが向上し、目標達成に寄与できると考えています。さらに、各メンバーに適宜プロジェクト型の業務を任せ、さまざまなチャレンジを経験させることで、権限移譲を進め、広く深い業務経験を積む育成計画を立て、適宜アドバイスを行いたいと思います。

「捉える」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right