データ・アナリティクス入門

プロセスが紡ぐ学びの軌跡

原因探索はどう? 問題の原因を探る際、プロセスに分けて考えることの重要性を実感しました。Week1で学んだ「分析は要素を分けて比較する」という手法を再確認し、今後も意識して取り組んでいきたいと思います。また、対概念について学ぶ中で「問題に関係する要素」と「それ以外」を区別するシンプルな考え方が非常に使いやすいと感じました。これまでに習ったフレームワークとも併せ、具体的な分析に活かしていきたいです。 判断基準はどう? さらに、「正解」が存在しない中で最適な案を選ぶには、適切な判断基準に基づいて評価するプロセスが不可欠であることが印象に残りました。精度を高める努力は必要ですが、時間をかけすぎないバランス感覚を持ちながら課題に取り組むことが大切だと考えています。 営業戦略考える? また、売上や利益を拡大していくために、What、Where、Why、Howを丁寧に検討し、効果的な営業施策を立案・実行する必要性を感じました。関係者に説得力のある行動計画を提示することで、より良い成果を得られるよう努めていきます。 多角的視点は? 一つのアイデアに固執せず、多角的な視点で物事を見ることも心がけたいです。正解のない状況でも、適切な判断基準を設定して効率的に進めることで、無駄な時間を省きながら最適な解決策にたどり着けると実感しました。

データ・アナリティクス入門

残業削減の鍵はロジックツリーとIT活用にあり

問題の本質をどう見極める? 問題や課題に対応する際、すぐに対応策を安直に打ち出すのではなく、まずはその問題や課題がどのようなもので、なぜ、どこで発生しているのかを考える必要があると学びました。これを実現するために、MECEの考え方を用いてロジックツリーで問題や課題を細分化し、対応策を複数検討し、状況に応じて採用する対応策を決定することが合理的な判断となることがわかりました。 IT活用で解決策を見つけるには? また、ITの活用によって業務効率化を検討する際には、「業務効率化」という漠然とした課題を、ロジックツリーで細分化することで解決の手がかりを得ることができます。具体的には、どこで、なぜ、どのような問題が発生しているのかを特定し、その問題を解消できるITを導入することによって、費用対効果を意識した問題解決が可能となることを理解しました。この学びは、現実の問題解決に活かせるものだと考えています。 部署の問題をどう改善する? 現在、所属する部署では残業時間が非常に多く、人員も多いという問題があります。この部署でどの作業が一番多く時間を要しているのかを、ロジックツリーで特定しました。その結果、出荷日や納期変更が頻発している作業が問題であると判明しました。したがって、この部分に有効なITの導入や、業務プロセス自体の見直しを提案したいと考えています。

データ・アナリティクス入門

プロセス分解で業務改善の新たな一歩

プロセス分解の重要性とは? 問題の原因を探る方法として、プロセス分解が非常に有効である。例えば、広告であれば表示からクリック、クリックから申し込み(コンバージョン)といった形で細かく分解することができる。また、解決法(HOW)を検討する際にはA/Bテストが有効である。この方法では、比較対象以外の条件を揃え、目的を明確にすることが重要である。 数字だけではわからないことは? 現在の企画管理業務では、出てきた数字だけで分析や判断をしてしまうことが多い。しかし、出てきた数字の要因がどこにあるのかを探るためには、細かいプロセス分解ができなくても、大枠でのプロセスに分けて見ることができるのではないかと考えた。今回の講義を通して、A/Bテストの有効性を学べたが、A/Bテストの範疇を超えた検証(生産プロセスの改善や販売における改善検証)のやり方についても学びたいと思った。 データ分析の効率化をどう進める? 講義では、身近なデータを使ってプロセス分解を行う方法について触れられた。日々の業務におけるデータ分析のスピードアップや、分析に十分な時間を確保できているかを検証する必要を感じた。具体的には、データ収集、データ加工、分析、共有にそれぞれどれくらいの工数がかかっているのかを明確にし、さらに効率化して、より早く深い分析と共有を実践できる方法を探りたい。

クリティカルシンキング入門

成果を引き出す伝える力の重要性

成功と失敗の違いは? 「イシューからはじめよ」の内容に目新しさは感じませんでしたが、「BIG THINGS どデカいことを成し遂げたヤツらはなにをしたのか?」で述べられている【失敗したプロジェクトの共通点は、「すばやく考え、ゆっくり動く」ことだ。一方、成功したプロジェクトはいずれも「ゆっくり考え、すばやく動く」ことを徹底している。】という点と共通していると感じました。このような発見をすることができ、自分自身の業務の見直しが重要であると改めて思いました。 成果伝達の工夫は? 現在取り組んでいるコンサルティングセールスやセールスイネーブルメントは、個人の課題解決力に大きく依存しています。これまで自身の成果を上げることはできていましたが、他のメンバーに成果を伝える過程で問題が生じることがありました。メンバーが成果を出せるような仕組みを作るためにも、「伝えること」にもっと時間と労力を投入することが必要だと感じています。 業務見直しの方法は? 知識を得ていることと、実際の業務で適用し続けることには大きな違いがあります。今回の講義を通じて、自分の業務を定期的に見直すことを習慣化したいと思います。具体的には、講義を活かして「週1回のふりかえり、イシューに立ち返る時間を死守する」ことを取り入れ、この機会を確保するように努めていきたいと考えています。

データ・アナリティクス入門

仮説思考で学びを実践、諦めない心の重要性

仮説思考で成果を出すには? 仮説思考の鍛え方について体系的に学ぶことができ、非常に勉強になりました。毎回同じような学びであっても、体系的に言語化することで再現性が高まるため、自分で実践するにも他の人にアウトプットするにも非常に参考になります。 諦めない姿勢の重要性を再確認 仮説思考の鍛え方を通じて、「諦めず・熱意を持って・仮説を考え続ける」ことの重要性を改めて感じました。理解するだけではなく、それを実際に実践し、成果に結びつけることは非常に難しいです。そのため、「諦めない」ことがもっとも大切であると過去を振り返って改めて感じます。 継続的なデータ分析の意義とは? 経営データのデータ分析については、じっくりと分析する機会はあるものの、継続的には行っていません。課題は次々に発生するため、つい短絡的に結論を出してしまいがちです。これからはしっかりと時間を確保し、仮説検証を繰り返し行って問題解決の精度を高めていきたいと思います。 タスク整理と学びのルーチン化 まずは自分のタスクを改めて整理し、優先順位の低いものは権限移譲するか、削減して時間的余裕を生み出します(9月中に実施します)。また、毎週土曜日は極力「学びと実践」の時間とし、仮説検証を毎週のルーティンとして実践していきたいと考えています(今週から開始します)。

データ・アナリティクス入門

仮説が導く学びの開花

仮説検証ってどう進める? 仮説には、結論を導くための仮説と課題解決を目指すための仮説の2種類があります。これらの仮説を検証するためには、まず誰に、どのようにデータを収集するかを明確にし、収集作業に入ることが必要です。一方的な観点に偏らず、反論を排除できる十分な異なる視点からデータを集めることで、仮説の検証はより説得力を増します。日々の業務の中で仮説を持つことにより、課題意識が向上し、目的が明確になるため、進むべき道に迷いが生じにくくなります。 大企画はどう進める? また、時間外労働の削減だけでなく、育児などで定時退勤が求められるメンバーもいるため、特に大きな企画や業務においては、仮説を立てた上でクリティカルに仕事を進める必要性を再認識しました。同時進行している別の案件の仮説に影響を受けることもありますが、データ収集と検証によってその関連性を明確にし、業務を円滑に進めていきたいと考えています。 調査票はどう作る? 現在取り組んでいるアンケート調査では、調査票設計の際に各項目についての観点や視点を検討しました。時間が限られていたため、場合分けが十分でなかった可能性もありますが、調査票は既に完成しており、明日から調査を実施する予定です。今回のアンケート調査の関連証拠として、データの特定を進めていきます。

データ・アナリティクス入門

データ分析で見つけた新たな気づきと行動力

解決策をどう選ぶ? 適切な解決策を決定する際には、決め打ちせずに他の仮説から導き出されるHowも考慮することが重要だと感じました。自社が現状で何を優先すべきかを考え、解決策同士を比較しながら適切な選択をする必要があります。そのためには、常に目的と優先事項を意識し、立ち戻って再考することが必要だと思います。 行動が生む成果とは? 完璧を求めすぎるあまり、仮説の検証ができない、考えすぎて動けなくなることもあります。ある程度の目途がついた時点でまず行動することが、結果的に良い仮説を生むことになります。 データ整理の新たな切り口 データを切り口を変えて整理する方法について述べます。物流会社で専用アプリを使用してトラックの待機時間を集計していますが、単なる集計だけでは不十分です。時間帯別や事業所別など切り口を変えてデータを整理し、今後の活用方法を示す必要があります。 業務プロセス改善の手順 問題箇所を特定し、各事業所の業務プロセスのどこに起因しているかをグループ内で議論したいと考えています。最終的には、待機時間の集計作業から業務プロセス改善まで話をつなげたいと考えています。そのために、本講座で学んだ「客観的にわかりやすく数値化して説明する」ことを意識しながら、メンバーと議論を続けていこうと思います。

データ・アナリティクス入門

論理ツリーで磨く実践スキル

なぜ手法を再確認? 今回の学習では、問題解決のステップ(What/Where/Why/How)に沿って、各段階でどのようなアクションを取るべきかを再確認することができました。普段の業務でも同様の手法を取り入れていますが、今回の具体例を通じて現状の見直しに役立つと感じました。 適切な分解は何故? また、ロジックツリーに取り組む際、すべての要素を漏れなくダブりなく洗い出そうとするあまり、時間をかけすぎてしまう傾向があることを改めて実感しました。特に末端の階層にこだわりすぎず、適切なレベルで分解するというアドバイスは大きな気づきとなりました。 現業務の解析はどう? 現在の業務では、顧客へのサービス提供に際してコスト試算や自部署の予算計画、実績の分析を行っています。例えば、コスト試算においては提供価格、原価、販管費といった大枠から、さらに細かい費目に分解して検証していますが、構成要素をツリー状に分解するという手法は初めての体験でした。今回の学びを現業務にも活かせると考えています。 次の改善策は何? 今後は、自部署における予算計画、実績把握、コスト試算のプロセスに、ツリー状の分析手法を取り入れてみます。一度試してみて、試算の妥当性や課題の特定にどのような効果があるかを検証していきたいと思います。

マーケティング入門

感動体験が未来を拓く

感情と体験のつながりは? 「経験が感情に紐づき、その人にとって唯一無二になる」という考えが最も印象的でした。単に商品を販売するのではなく、顧客との長期的な関係を築くことでライフタイムバリューに結びつけるというアプローチは、体験の変化や社会の課題解決といった視点が、長期的な顧客関係形成において重要であることを教えてくれました。 なぜ起業の知見が必要? この学びは、新規業務の提案に活かすとともに、将来的な起業にも役立てたいと考えています。特にスタートアップでは、短期的な成果と長期的な仕組み作りの両面が求められるため、大手企業の事例だけでなく、中小企業の成功と失敗の両パターンから経験を積む必要があると実感しました。そのため、書籍や動画サービスを利用し、情報を常に収集する習慣を大切にしています。 どうやって学びを深める? 具体的には、書籍と動画の二つの媒体から継続的に情報を得る計画です。購入した本は全て読み通すのではなく、目次やダイジェストを参考にし、読むべき内容かを判断してから深く読み込むようにしています。また、今後は学習時間に余裕ができると考え、その時間を有効活用して継続的な学びを心がけるつもりです。さらに、部署内でアウトプットの機会を設け、知識を伝えることでさらに習熟を目指していきたいと考えています。

クリティカルシンキング入門

データ分析で見える新たな発見と改善法

データをどう視覚化する? データを分析する際には、今ある数字に一手間かけることが重要です。ただ数字を並べるだけでなく、グラフや表に変換すると新しい発見が生まれます。また、比率に変換することで別の角度からデータを見ることができ、さらなる洞察が得られます。 分解の基準は何が有効? データを分解する際には、人、時間、手段などの基準で区切ると分かりやすくなります。例えば、月次や年次の売上分析、SNSのインサイト分析など、数字が明確に示されるものだけでなく、業務の効率化や成果が出なかった場合の原因分析にも役立ちます。 問題の特定と解決策のステップ まず、起きた問題に対して「もれなくダブりなく」を意識し、全体を大きく分けて定義します。その際には、層別分解、因数分解、プロセス分解を用いることが有効です。次に、出てきた項目をさらに分解し、どこが問題点なのかを数字や表で明確にします。そうすることで、問題の箇所を特定しやすくなります。問題が特定できたら、なぜそうなっているのかを考えます。そして、どう解決すれば良いのかを分析から導き出し、仮説を立ててトライアンドエラーを繰り返し、最適な解決策を見つけます。 これらの手法を念頭に置くことで、データ分析がより効果的になり、業務の改善や効率化にもつながると感じました。

データ・アナリティクス入門

仮説で読み解く成功のヒント

仮説の基本は何? 今回の学習で、仮説について深く学びました。仮説とは、ある論点に対して一時的に立てる答えのことで、例えば、ノンアルコール商品の販売増加を見る際、対象となる消費者をビールが好きな運転者や妊婦などに分けて分析する、といった考え方が応用できると感じました。 仮説の役割はどう? また、仮説には問題解決のための仮説と、結論を導くための仮説があることを理解しました。時間軸として、過去、現在、将来の視点で検討していくこともポイントでした。 売れる理由は何? 具体的な例として、①なぜある商品が売れるのか、または売れていないのかについての仮説では、若い世代に人気で刺激的ではない味が影響している可能性や、商品が不安定なために安定した需要を得られていないのではないかといった視点が挙げられました。②なぜある地域や取引先で売れるのか、あるいは売れていないのかを考える際には、その地域に若い人が多いのか、高齢者が多いのかという点が仮説の根拠になり得るという点が印象的でした。 検証データはどう活かす? さらに、仮説を検証するためには比較可能なデータ収集が不可欠であり、アンケートを実施する際の設問項目の考え方や、どのようなアンケート内容が仮説と結論を結びつけるのに適しているかという点にも関心を持ちました。

データ・アナリティクス入門

明確な未来への第一歩

学びの整理はどう? 講座で得た学びを整理し、ありたい姿を描きなおすことで、これまでぼんやり感じていたことが明確になりました。今回の作業を通じ、今後の目標や現在抱えている課題、そしてその課題を解決するために実行すべきことが具体的に見えてきました。 次に何をすべき? また、受講を終えた今、次に取り組むべきことがはっきりしてきたと強く実感しています。仕事と並行しての学習が大変な時期もあり、あと少しで済ませようという気持ちにもあったものの、まだ足りない部分や今後への危機感を改めて感じることができました。そのため、次のアクションについてじっくり考える貴重な時間となりました。 経験はどう活かす? これらの経験は、モチベーションを保ち正しい方向性を模索する上での振り返りとして、大変意義があると感じています。たとえば、フレームワークの知識は、仕事で内部環境や外部環境を分析する際に具体的な切り口として役立っています。 自己研鑽はどうする? さらに、受講後も土曜日に翌週の課題に取り組む学習習慣を継続し、自己研鑽の時間を確保していきたいと考えています。加えて、実際の分析作業で不安を感じるExcelの使い方についても、実践を通して学びたいと思っており、まずは関係する講座を探すところから始めるつもりです。

「時間 × 解決」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right