戦略思考入門

学びが進化する生成AIの力

規模の経済本当? 規模の経済性については、なんとなく理解しているつもりでしたが、具体的にどの範囲で効果が発揮され、また逆に不経済となるケースがあるかを学び、改めて納得しました。 習熟の変化は? 習熟効果に関しては、これまで自分の業界で当然の現象と感じていました。しかし、生成AIの登場により「急激なイノベーションが習熟効果に大きな影響を与える」という事実を実感することができました。 ネットワーク理解は? また、ネットワークの経済性についても、仕組みを聞くことで再び理解を深めることができました。 業界はどう変わる? 業界によっては規模の経済性を十分に活かせない場合もあると感じますが、生成AIの影響下では習熟効果が劇的に変化しているため、今後はAIを活用した新たな習熟効果の模索に取り組んでいきたいと思います。

データ・アナリティクス入門

データで解く3Cの秘密

3C/4Pの意義は? 別講座で学んだ3C/4Pといった基本的なフレームワークが、さまざまな場面で十分に活用できることを実感しました。まず、データをざっくりと切り出してから眺めることで、課題をもとに仮説立案がしやすくなる点が非常に有効であると学びました。また、3Cに関しては、多少の変形を加えて3つの象限を定義することが重要だと感じています。 仮説はどう構築する? 対応ケースの増減について仮説を立てる場合には、3Cを変形し、関連する要素に置き換えてデータを俯瞰的に分析する手法が考えられます。その視点としては、C:Customer、C:Contact(ケースをあげる人)、C:Customer Engineer(ケース対応する人)といった切り口でデータを整理することにより、具体的な洞察が得られるのではないかと考えています.

データ・アナリティクス入門

視点を広げる根拠の解決術

原因考察と仮説検討は? 原因を考える際、問題発生までのプロセスを洗い出し、対概念などのフレームワークを用いることで、仮説検討の視点を漏れなく広げられると感じました。また、判断基準を設けた上で重み付けを行ったり、A/Bテストを実施して検証する方法も学び、具体的な打ち手の決定に役立つと感じました。 解決アプローチはどう? 業務におけるこれまでの問題解決のアプローチは、決め打ちに偏りがあり、問題点の洗い出しの視点が狭かったことや、なぜその結論に達したのかの言語化が不足していたと痛感しました。今後は、what→where→why→howのステップに沿って原因の観点を広く整理し、データを比較しながら根拠を持って仮説を立てたいと考えています。さらに、打ち手の決定に際しては、A/Bテストをうまく活用することを試みたいと思います。

データ・アナリティクス入門

原因追求で成果を最大化する方法

分析フレームワークの活用法 分析手法として「What, Where, Why, How」というフレームワークを用いることは非常に参考になりました。つい「How」にばかり注目しがちですが、まずは現状と理想とのギャップを明確にし、周囲との合意を形成しながら進めることが重要だと感じました。 売上未達の原因特定と対策 売上未達の要因を特定し、対策を考える際にも役立ちそうです。これまでは経験や勘に頼りがちでしたが、このフレームワークを行き来しつつ、効果的な打ち手を模索したいと思います。 問題の本質を探るためには? まずはMECEに基づいて、あらゆる要因を考慮しながら問題の本質を探りたいと考えています。また、問題の特定や仮説に関しては、他のチームメンバーと意見交換を行い、精度の高い取り組みとなるよう努めたいと思います。

データ・アナリティクス入門

目的と課題を見極める!ビジネス成功の鍵

分析の目的を再確認するには? 分析は、目的があって初めて意味を持つことを再認識しました。ビジネスパーソンの価値は、会社の目的や日々の業務の課題を、いかに効率的かつ低コストで解決できるかにかかっていると考えます。 課題共有の方法は? まだ具体的な業務への分析の活用イメージはありませんが、まずは目的や課題をしっかりと定めることが重要です。特に、その課題が他者からの依頼である場合、最終的に得たいゴールを詳細に明確にし、目的や課題を共有するために議論を重ねることが必要です。 新規ビジネスの土台を整えるには? 新規ビジネスを検討する際には、まず会社や部署の目的やゴール、現時点での課題を正確に把握することを重視したいです。その土台が整った上で、各種フレームワークやツールを活用した分析に進むことができると考えています。

戦略思考入門

日々の意識が未来を創る

全体振返りで何を感じる? 今週は全体の振り返りを行いました。本講座では、ありたい姿に向けてどのように進め、実現の確率を上げるかについて学びましたが、既に忘れかけている項目があることに気づき、日々の意識がいかに大切かを改めて感じました。 成果施策の効果は本当? 数字で成果が見込みやすい施策については、現状の取り組みが本当に効果的かどうかを再評価し、その上で必要な改善を行っていきます。一方、要員の育成など成果が数値に現れにくい施策に関しては、シナリオ作りからフレームワークを再度適用する方針を明確にして取り組むこととします。 日々の業務意識はどう? また、Q1の回答にも記載しましたが、使わなければ忘れてしまう内容に対しては、皆さんが日々どのような意識で業務に取り組んでいるのかを再確認することが重要だと考えます。

クリティカルシンキング入門

固定概念を打ち破る3つの視

思考の枠は変わる? 無意識のうちに人は自らの思考を制約してしまい、それぞれに独自のクセがあると実感しました。ワークを通じて、視点、視座、視野を変えて物事を客観的に捉えることで、本質的な課題や解決策を導き出せる可能性を体感できた点は大変印象的でした。また、MECEの考え方に触れ、具体と抽象の間を行き来する手法の有用性についても学ぶことができ、非常に参考になりました。 実務でどう活かす? 顧客向けのプレゼンテーション資料作成や社内ミーティングといった実務の場面で、今回学んだ3つの視とMECEの考え方が活かせると感じています。今後は、課題に取り組む際に常にこれらのアプローチを頭に留め、業務上で一定の答えが出た後も思考を停止することなく、継続的に問いを立てながらクリティカル・シンキングを定着させていきたいと思います。

データ・アナリティクス入門

仮説×データで未来が変わる

仮説とフレームワークは? 本講座では、問題解決のプロセスにおいて、スピードと精度を向上させるために、仮説を立てながら分析を試みる重要性を学びました。また、3Cや4Pといったフレームワークを効果的に活用する方法も理解できました。 必要データはどうする? 仮説に基づいて必要なデータを抽出し、場合によっては新たにデータを取得する必要があることも実感しました。既存のデータ分析にとどまらず、サーベイの実施などによって分析に不可欠な情報収集にも役立てることができると感じました。 多角的観点は何故? さらに、分析の視点は単に数値やデータを検討するだけでなく、データ整備や企画立案の段階でも重要であるという気づきを得ました。今後、業務のあらゆる場面でこれらの視点を取り入れながら取り組んでいきたいと思います。

アカウンティング入門

PL分析で見えた!未来の利益拡大戦略

PLの理解を深める意義とは? PL(損益計算書)の仕組みを理解する学習を通じて、企業がどのように利益を生み出すかだけでなく、将来的にどのようにして利益を拡大していくべきかを、その企業のコンセプトを考慮しながら想定することが重要であると学びました。 月次分析での知識活用法は? まずは自社の状態を把握するために、毎月の月次分析でこの知識を活用したいと思っています。利益の有無だけでなく、今後どのような対策を取ることでさらなる改善が期待できるのかという観点からも分析を進めていきたいです。 競合と取引先のPL比較はなぜ重要? さらに、競合他社や取引先に関する分析も行い、さまざまな業界のPLとの比較も試みていく予定です。なお、グループワークで紹介された動画も参考にしながら、学びを深めていきたいと考えています。

データ・アナリティクス入門

固定観念を打破する新視点

固定観念はどう対処すべき? 今週の講義では、マーケティング分野に関して既に知っている内容も多く取り上げられましたが、知識があるがゆえに陥りがちな固定観念に注意する必要があると感じました。これまでの経験から「おそらくこれが原因」と考えてしまう傾向がありましたが、フレームワークを活用し、自分が持っていない視点から再確認することの重要性を再認識しました。 多角的判断はどう進める? また、マーケティング施策の検討時には、自社や自分自身の状況だけに注目しがちですが、競合や市場といった複数の観点から総合的な判断を行うことが大切だと実感しました。さらに、複数の選択肢の中から意思決定をする場合、判断基準を点数化し合計点で評価する方法が合理的であるとの知見も得たため、今後の実践で積極的に活用していきたいと考えています。

戦略思考入門

内外の視点で創る自分改革

分析はどう役立つ? 現状分析は意思決定において非常に重要だと感じます。強みと弱みは表裏一体であり、両者を完全に分けることは難しいですが、恐れずに強みを最大限に活かすことが求められると実感しました。一方で、外部環境や社会情勢といった要素は正確に分析するのが難しく、これらの分析が意思決定にどのように影響するかをしっかりと理解する必要があると感じました。 理想実践のヒントは? 今回学んだフレームワークを活用して、チームの現状と理想の姿を明確にしていきたいと考えています。内在的な要因だけでなく、外部の要因に対する分析も重要であり、そのプロセスをより深く学ぶ必要性を強く感じました。外部要因の正確な分析には一定の経験と広い視野が必要だと認識しており、今後もさらなる学びを通じて、そのスキルを磨いていくつもりです。

データ・アナリティクス入門

AIコーチングで広がるグループ学び

グループの雰囲気はどう感じた? 初回は緊張しましたが、グループワークでは話しやすい雰囲気で進行できたため、大変助かりました。また、AIコーチングによる問いかけが非常に面白く、考えるきっかけとなりました。 研修効果は本当に測れた? 研修効果の測定に向けては、既存の受講アンケートで収集した定性・定量データを十分に活用できていないと感じています。今後は、受講者の満足度アンケートや受講前後の評価、テストスコアの推移を分析し、研修プログラムが成果につながっているのかを検証していきたいと考えています。 業界のデータはどう活かす? さらに、各業界におけるデータの利活用方法や、これからの取り組み動向についても知りたいと思っています。その情報を基に、自社や業務への取り入れ方を検討する参考にしたいです。

「ワーク」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right