データ・アナリティクス入門

平均値の罠に気づいてデータを活用する方法

平均値の危うさを再認識 今回の学習で、平均値の危うさを改めて知りました。例題を通じて、グラフにすると簡単に理解できる数値もあれば、解釈が難しい数値もあると感じました。代表値と散らばりをうまく活用して、仕事に活かしたいと思います。 正規分布と2SDルールに興味 これまでも様々なグラフを見たことはありましたが、平均値の名称と内容について初めて深く理解できました。特に、正規分布と2SDルールはとても興味深かったです。 標準偏差の応用は可能? 標準偏差の数値でデータの散らばりを明確にすることも応用できそうです。弊社オウンドメディアにおけるコラムのオーガニック流入の記事ごとの順位を、分布グラフを用いて検証してみたいと思いました。それにより、カテゴリーを大分類し、リライトの優先順位を決めるなどの応用が期待できます。 新たな発見を期待して まずは、今回学んだ内容をしっかり復習し、これまで手をつけていなかった集計にも活用してみます。そうすることで、新たな発見や課題が生まれることを期待しています。さらに、TOP10の記事のキーワードリサーチにも、この解析手法を試してみたいと思います。

データ・アナリティクス入門

問題解決を極める!広告業での実践ノウハウ

プロセス分解が鍵となる? 原因の探求について学びました。特に、問題の原因を探る方法としてプロセス分解が有効であることを知りました。問題の箇所を絞るためには、プロセスを詳しく分析し、仮説を立て、その仮説を検証することが重要です。このプロセスには、文データ分析や仮説の検証などのステップが含まれます。 広告の効果検証とは? 広告業に携わる私にとって、こうした方法論は日常的に行っていることですが、改めて体系的に学ぶことの意義を感じました。特に、広告の効果検証においてはPDCAサイクルを用い、データ分析を通じて仮説を立て、その仮説を検証するプロセスが連続的に行われます。この週に学んだ内容は、日々の業務におけるステップのヌケモレの確認に活用していきたいと思います。 仮説の重要性を再確認? データに触れることを日常的に行い、データを一度集めただけで満足せず、常に仮説をブラッシュアップし続けることが必要です。同時に、データを継続的に収集し、これらを繰り返し行うことで課題解決ソリューションに繋げることができます。また、A/Bテストも広告業務で実施しており、学んだ内容を実践に活かしていくつもりです。

マーケティング入門

戦略を練る!マーケティングの新発見

マーケティングの基本とは? マーケティングとは、相手に価値や魅力を伝えることを通じて、顧客にその魅力を感じてもらい、商品を購入してもらうための仕組みやプロセスを作ることです。自分自身をPRするワークでは、自身の価値ではなく、思いや感想ばかりを伝えてしまい、主旨から外れた回答をしてしまいました。この経験から、まず何を伝えたいのか、そしてどのように伝えるのかという軸をしっかり持つ必要性を強く感じました。 営業戦略に必要な「軸」とは? 本社や支社の方針に基づいて自身の営業活動の戦略を組み立てる際や、商品プロジェクトの方針作成、販売方法の立案を進めるうえでも、この軸は重要です。顧客に新商品や既存商品を提案する際、あるいはキャンペーンを立案・提案する場合にも、明確に何を伝えるべきかを考えることが求められます。 ライブ授業の経験から学ぶこと ライブ授業での経験を活かし、自分が一番伝えたいことをどのように表現するかを常に考える癖をつけることが大切です。また、マーケティングとセリングの違いを意識し、戦略を立てる際には、4Pや3Cを踏まえ、明確な差別化を定義して提案内容を練り上げることが重要です。

マーケティング入門

ターゲット選定で未来を切り拓く方法

セグメンテーションの أهميةとは? セグメンテーションとターゲティングについて学び、ニーズや特性に基づいて市場を区分し、適切なターゲットを選ぶことの重要性を理解しました。限られた経営資源を如何に効果的に活用して、結果を導き出すかが鍵となります。様々なことに手を広げすぎると、資源が枯渇してしまい結果が出ないというリスクがあります。 自社のコアコンピタンスを見極める 自社のコアコンピタンスが何であるかを考えることも大切です。もし今後、自社のノウハウを外部に販売することになった際、どのようにターゲティングを行うべきか。また、市場に競合がどのくらいいるのかを把握するためには、自分のスキルを高めることも重要ですが、市場全体を俯瞰する視点も必要だと感じます。 マーケティング手法はどう選ぶ? 現在は社内の自動化と個人のスキル向上に重点を置いていますが、それらを自社の価値あるコンテンツとして市場に提供するにはどのようなマーケティング手法が適しているのかを考える必要があります。また、学んだ思考のフレームワークを活かして、まず仮説を立て、その仮説に基づく販売戦略を考えることが求められています。

アカウンティング入門

収益構造から読み解く経営戦略

収益構造はどう影響する? 学んだ内容の中で印象的だったのは、事業活動の収益構造が企業のコンセプトに大きく影響されるという点です。自社がどのようなコンセプトで事業を展開し、収益を上げていくのかを最初に明確にしておくことが重要であると感じました。そうしなければ、場当たり的な対応になったり、顧客のニーズを捉えられない、あるいは伝わらなかったりするリスクがあるからです。さらに、PLから読み取れる収益構造を基に、企業の特徴や課題について仮説を立て、検証する方法も学びました。 部署間比較で何が見える? この知識を活かし、まずは自部署の事業収益構造と、競合他社との比較から自社の強みや弱みを分析し、課題解決につなげたいと考えています。また、月次の採算会議や各会議で、自部署の課題や対策を検討する際にも、この学びを実践的に活用しています。さらに、自部署のPL(管理会計ベース)と他部署のPLを比較することで、各部署の特徴や利益の出し方にも注目するようになりました。今後は、競合他社のPL(財務会計ベース)も確認しながら、自社に不足している活動を明らかにし、経営層へ具体的な提言を行っていきたいと思います。

クリティカルシンキング入門

データ分析で気づく新たな切り口の魅力

データ分析の新しい切り口は? データ分析において、単に数字を見るだけでなく、その切り口や追加する要素によって新たに得られる情報が異なることを学びました。データを視覚化することで、適切な切り口を見つける手助けにもなります。そのため、まずは異なる切り口でデータを分けてみることから始めていきたいと思います。 売り上げパターンはどう探る? 例えば、商品の売り上げを分析する場合には、既存顧客や新規顧客のどの層で売り上げが伸びているのか、また、新色と既存色のどちらが売り上げに寄与しているのかを確認する必要があります。 新商品の需要をどう予測する? また、新商品の市場性やニーズについても、どの年代や年齢層に需要があるかを分析することが大切です。このためにアンケートを実施し、そのデータを元に市場性を確認していきます。 昨年の売り上げデータの活用法は? 昨年発売した商品の売り上げについては、月ごとに分析を行っているため、データの分け方をさらに細かく見直し、実践に活かしたいです。新商品だけでなく、既存商品や周辺商品も含めて、相関性を確認することで、より深い洞察が得られると考えています。

戦略思考入門

明確なゴールが未来を拓く

自分の目的は何? 「目指す場所を明確にする」「やるべきこととやらないことを峻別する」「独自性(強み)を持つ」という基本概念は、よく耳にする内容ではありますが、自分の言葉でしっかりと認識し明文化することで、漠然と考えるのではなく、具体的かつ正確に思考できるようになると感じました。その結果、現場で次のアクションに確実につなげ、実際の仕事に生かせると考えています。 会議の進め方は? 打合せや会議の際、話が広がりすぎたり個人の都合が優先される状況でも、会議のゴールを明確にし、その達成のために参加者が何をすべきか、各自の強みをどう活かすべきかを整理することで、参加者全員が前向きに結論を受け入れられると実感しました。こうしたアプローチは、仕事の中で実践しやすいと感じています。 将来の戦略は? また、学習を進める中で、5年後や10年後の目標をより明確にし、性能面、コスト、環境規制への適合性などを踏まえた戦略や戦術を考える意欲が湧いています。今回身につけた知識を現職で活かしつつ、今後の学習を通じて将来の戦略立案に役立つスキル習得のためのマイルストーンを描けるよう努めたいと思います。

アカウンティング入門

数字を紡ぐ、事業の新たな物語

P/L全体の位置づけは? 今週はP/L全体の概要について学びました。これまで自分の業務では売上総利益や営業利益まで意識していたものの、経常利益、税前当期純利益、当期純利益といった項目に触れる機会がなかったため、今回の学びでそれぞれがどのような位置づけであるかを理解できました。 事業価値の違いは? また、同じ業態の事業であっても、自社が提供する価値の違いにより、費用のかけ方や利益の生み出し方が変わってくることを再認識しました。そのため、P/Lの数字を単なる数値として捉えるのではなく、自社のビジネスモデルというストーリーを描きながら読み解くことが重要であると感じました。 今後の活かし方は? 具体的には、次の点が今後の業務に生かせると考えます。まず、来期の事業計画策定の際に、今回の知識が大いに役立つでしょう。次に、売上原価の内訳や利益構成比を詳細に確認することで、自社の利益構造や提供価値を改めて認識し、改善点が見つかるかもしれません。さらに、同業他社とのP/L比較を通じて、それぞれの企業がどのようなストーリーを持って事業を行っているのかを考える機会にもなると考えています。

マーケティング入門

お客様の本音に気づく瞬間

潜在ニーズを発見できる? 成功するマーケティングにおいて、顧客が抱える潜在的な困りごと―すなわちペインポイントを見出すことは非常に重要です。顧客自身が気付いていない欲求を言語化するためには、購買履歴やサイトの回遊履歴などの定量的な指標と、アンケートやグループインタビューなどによる定性的な指標の両面から分析する必要があります。 自社強みはどこ? ペインポイントが明確になった後は、他社に先んじて自社の強みを活かし、その解消策を講じることが求められます。このため、競合他社と比較して自社の優位性や強みが何であるかを客観的に整理し、その認識をチーム全体で共有することが不可欠です。 定性評価はどうなる? また、自社の顧客についてペインポイントを検討する際には、購買履歴やサイトの回遊データといった数値分析に加えて、顧客アンケートなどを通じた定性的な評価も取り入れる必要があると感じます。 チーム共有は確実? さらに、競合他社に対して自社の強みや優位性を明確にし、客観的な視点で整理した内容をチーム内で共通認識として持つことが、今後の施策を円滑に進める上で重要となると考えます。

データ・アナリティクス入門

挑戦で切り拓く統計の世界

平均値の使い方は? 普段は代表値や単純平均を活用して概ねの状況把握に努めています。加重平均や中央値も業務の中で用いられている印象ですが、幾何平均や標準偏差に関しては、知識としてはあるものの実践する場面が少なく、具体的な事例を通じて使いこなす機会が今後の課題だと感じています。 ばらつきの見える化は? 特にばらつきに関しては、標準偏差の数値だけでは理解しにくいため、ビジュアル化して整理することが重要だと思います。ビジュアルで示すことで、各切り口からトレンドを読み取りやすくなり、自身だけでなく他者にも理解してもらいやすくなると感じます。 幾何平均はどう活かす? また、幾何平均については、実践での理解を深める努力が必要だと感じます。理解が進めば、標準偏差と組み合わせて顧客分析などの業務において有効な手段になると考えています。 分析に挑戦するには? まずは、苦手意識のある分析手法や未経験の手法に挑戦し、自分自身で試してみることが理解への早道だと思います。職業柄、大規模なデータに触れることもあるため、今回学んだ知識を実務にうまく活かしていきたいと考えています。

アカウンティング入門

数字が語る未来へのヒント

P/LとB/Sの基礎は? 本講座を振り返ることで、自分の頭の中を整理する良い機会となりました。まず、P/LとB/Sの基本構造を理解し、両者がどのように連動しているのかを具体的にイメージできるようになりました。 価値提供をどう捉える? さらに、財務分析にあたっては、まず対象となる事業がどのような価値を提供しているかを正確に捉えることが重要であると実感しました。提供する価値に応じて、望ましい財務状況も異なるため、単に利益の大きさや有無だけで事業の健全性を判断することはできないという視点を得ました。たとえ利益が計上されていても、流動負債が大きく短期間での返済が必要な場合、事業としての安全性は十分ではないと理解しました。 将来計画はどう進む? 今後は、この学びを期初の方針や戦略策定に活かしていきたいと考えています。これまであまり注目してこなかった財務面の視点を取り入れ、自社の財務状況を踏まえた上で、自分なりの考察や意見を具体的な方針・戦略に反映させるよう努めたいと思います。今月予定されている企業の中間決算発表を機に、まずは自分なりに財務状況の分析から始めることにします。

データ・アナリティクス入門

データ分析で広がる新しい可能性

仮説とグラフ、どう選ぶ? ライブ授業での演習を通じて、仮説を立てることや知りたいことを明確化する手法を学びました。これは、何と何を比較するデータを集めるべきか、そしてどのグラフを用いて視覚化するかを具体的に知ることに役立ちました。それぞれのグラフには特性があり、自分が伝えたいことに適したグラフを選択できるようになったと感じています。 試験結果はどう活かす? 勤務校では、各時期に行われる実力テストの結果をもとにヒストグラムを作成し、成績の分布を視覚化したいと考えています。これにより、各得点帯の生徒数の変化を確認し、生徒の学習がどの程度定着しているかを把握することができます。また、入学後に行ったアンケート結果を分析し、入学の決め手になった要因をデータやグラフでまとめ、今後の募集活動や広報活動に活かしたいと思っています。 クラス分析をどう実施? まずは、自分の担当クラスを対象に分析を行い、具体的なデータの種類や収集方法、仮説に基づくグラフ作成など、提案方法を試行錯誤してみます。そして、その結果を関係部署に提案し、学校全体の分析へとつなげていきたいと考えています。
AIコーチング導線バナー

「活かし」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right