データ・アナリティクス入門

仮説と比較で見える成長の軌跡

A/Bテストの見直しは? 業務において、あまり考えずにA/Bテストを実施していたことに気づきました。今後は、企画段階からバイアスを取り除く方法を模索し、比較のためのベースラインを整えることに留意したいと考えています。仮説に基づいてどのように探索を進めるかが鍵となり、改めて分析は「比較」が非常に重要であると実感しました。 フレームワーク活用法は? また、これまで学んだフレームワークや考え方(3C、4Pなど)を積極的に取り入れていきたいと思います。習得がすぐにはいかなくても、慣れるまで継続して実践し、しっかりと身に着けていく所存です。 データ分析はどう行う? さらに、A/Bテストを実施する際には、可能な限りランダマイズすることや、比較に必要なサンプル数や実施期間を十分に検討することが重要だと感じました。分析時にも、どのような背景や手法でデータが収集されたのかを意識しながら、より正確な評価を行えるよう努めていきます。

アカウンティング入門

数字で読み解く価値のヒント

同業でも何が変わる? 同じ業種・業態であっても、提供する価値の違いによってP/Lの内容が変わることを、あるカフェの事例から実感しました。逆に、P/Lを見ることで、その企業がどのような価値を重視しているのかが読み取れる場合もあると感じました。 異なる業種の理解は? また、業種が異なる場合、P/Lの構造自体が全く異なる形となることを学びました。粗利や営業利益といった単一の利益指標のみで企業の収益性を評価するのは妥当ではなく、各業種で発生する費用の性質を考慮しながらP/Lを理解することが重要です。 採算改善の提案は? ① 既存や新規プロジェクトの採算を検討する際、他のプロジェクトのP/Lと比較することで、損益構造の違いを把握する。その違いが何に起因しているのかを考え、採算改善のための提案につなげる。 損益の違いは何? ② ③ 複数のプロジェクトのP/Lを比較して、それぞれの損益構造の違いを詳細に分析する.

マーケティング入門

論理で読み解く市場の真実

どう学ぶべき? セグメンテーション、ターゲティング、さらにターゲティングの評価基準である6Rを学んだことで、これまで感覚的に捉えていた要素を論理的に整理でき、理解が一層深まりました。 どう分析する? 実際のビジネス現場では、すでにこれらのフレームワークを取り入れている場合が多いと感じますが、新製品の投入や期待した成果が得られていない場面では、改めて基本に立ち返ることで状況を正しく分析できると実感しました。 市場はどんな? また、外資系IT製品の取り扱いに関する経験を通じて、本国で成功している製品であっても、他国や日本市場で展開する際は市場特性を再検討する必要があると改めて認識しました。市場ごとの違いを正確に把握し、それに合わせた戦略を取ることの重要性を感じました。 次に向かう意欲は? 今後は、これらの学びを自らの業務に生かし、市場ごとの特性を十分に理解する視点から再評価を進めていきたいと思います。

アカウンティング入門

経営安定の鍵を握るBS活用法

経営の安定性をどう学ぶ? BS(貸借対照表)の理解を深めることにより、経営の安定性と持続可能性の確保がいかに重要かを学びました。特に、事業目的に沿った資産への投資と負債管理のバランスは、経営の鍵を握ると実感しました。借入を活用する際には、その利用目的や返済計画を明確に立てることが重要です。過度な負債はキャッシュフローを圧迫し、経営の自由度を下げる一方で、必要な投資を怠ることは競争力の低下につながります。慎重な判断が求められると考えます。 持続的成長へのステップは? さらに、BSを活用して事業の成長性や財務の健全性を評価することの重要性を再認識しました。資産の流動性や負債の返済スケジュールを見ながら、利益をどのように再投資するかを検討することが、持続的な経営には不可欠と学びました。今後は、BSの分析を通じて、適切な投資判断を下し、リスクを抑えながら成長を促進することを意識して学びを深めていきたいと思います。

アカウンティング入門

数字が教える、企業成長のヒント

数値で見る評価は? 事業活動を評価するためには定量的なアプローチが不可欠です。財務諸表は、その数値的な側面を理解し、分析や判断、戦略の立案を行うための基本的なツールであると再認識しました。今回の講座を通じ、財務諸表の読み解きという重要なスキルをより確実に身に付けたいと感じています。 財務三表はどう読む? また、自社の財務三表をしっかりと解釈することで、業績や直面している課題、全体の状況を具体的に把握し、自分自身の問題として捉え直す能力を養いたいと考えています。 経営報告はなぜ重要? さらに、経営層への報告や社内での議論の際に、会計の視点を取り入れることで、説得力のある提案や発言を行えるようになることを目指しています。そのためにも、社内外で自社や同業他社、競合の財務諸表に触れる機会を積極的に増やし、実際の数字を用いて講座で学んだ内容を反映させながら、実践的なアプローチを進めていきたいです。

データ・アナリティクス入門

変数分解で広がる学びの可能性

MECE活用の秘訣は? 問題解決を行う際は、もれなくダブりなく切り分けた状態でMECEを意識し、ロジックツリーを活用してアイデアを出すことが大切です。分解方法としては、層別分解と変数分解があり、様々な切り口で意味ある分類を行うことが求められます。最終的に一つの案に絞る際は、ロジックツリーで複数の案を出した後、評価基準に基づいて選定する手法が有効だと感じました。今回、これまで慣れていた層別分解に加え、初めて変数分解での案出しを実践してみることにしました。 品質改善はどう考える? 製造業での品質不良分析や、売上向上を目的とした修理データの分析にも、MECEやロジックツリーを用いた要因分析が役立ちます。たとえば、層別分解では製品別や地域別で分類し、変数分解では客単価×客数や数量×単価といった切り口を採用できます。これにより、不良の原因を網羅的に洗い出し、的確な対策を立案することが可能となります。

データ・アナリティクス入門

数値に隠れた学びの秘訣

単純平均で十分? まず、単純な平均値の算出だけでは誤解を招く結果になる可能性があると感じました。標準偏差を用いた分析、加重平均の導入、さらには外れ値を除外して計算するなど、数値として意味のある手法を用いる必要があるという考えに至りました。 NPS集計はどう変わる? また、問い合わせ対応後に実施しているNPSの集計についても、状況に応じた評価が重要だと考えます。障害発生時のNPSスコアと、通常の問い合わせ時のスコアが大きく異なるため、障害などの背景情報を考慮に入れて集計した方が適切であると思いました。 状況別スコアの信頼性? さらに、NPSの回答スコアは状況によって変動するため、その状況に関する詳細な情報を併せて提示し、分析の軸として活用することが望ましいと感じています。どのような状況でどの集計方法が最適かを試行錯誤しながら、知識とスキルを磨いていきたいという思いが伝わりました。

データ・アナリティクス入門

ひらめきを引き出すMECEの力

MECEでどう選ぶ? アイデア出しのプロセスで、MECEという手法を用い、全体像の中からアイデアを絞り込む方法が特に印象に残りました。たとえ評価基準で最終的に採用されないアイデアであっても、いったんすべて洗い出して評価することで、新たなチャンスや問題点を発見しやすいと感じました。 階層分析で何が見える? また、プロジェクトにおけるアイデア出しでは、階層ごとに分析することで、さまざまな発想が生まれやすくなる可能性を実感しました。同じく、課題を分析する際も、階層別や変数別に整理することで、より具体的な問題点に焦点を当てることができると感じました。 なぜ体感するのか? 現在は、アンコンシャスバイアスの解消を目指した若手ワーキング向けのフレームワークを企画しています。その一環として、MECEを取り入れたグループワークの時間を設け、同僚と一緒に体感する場面を設定したいと考えています。

データ・アナリティクス入門

洞察が導く実践の軌跡

ABテストの注意点は? ABテストは、広告制作や新商品のパッケージ調査など、クリエイティブの評価でよく用いられる手法です。実際の業務で使用していたためなじみがありましたが、条件を揃える部分で見落としがちな点があるため、実践時は特に注意しなければならないと感じました。 打ち手比較の意義は? また、打ち手の比較に関しては、単なるデータ分析にとどまらず、業務上の課題解決のための思考パターンとしても応用可能だと実感しました。物事の意思決定における「比較」は、非常に重要なプロセスであると改めて認識しました。 課題継続検証は? 業務では常に課題が発生するため、まず現状を把握し、比較のためのデータを精査しながら継続して検証することが重要だと考えます。さらに、プロセスを細分化して仮説を立て、実際に試していくというルーティンを、どの状況においても意識して取り組んでいきたいと思います。

データ・アナリティクス入門

数字から見える学びの世界

データの傾向は見えますか? データはビジュアル化することで多くのことが見えてくると感じています。そこで、まずは業務の件数や週平均、月平均などの数値を確認し、どのような傾向があるのか把握することから始めたいと思います。 年次データのばらつきは? 次に、年単位でのデータをヒストグラムに落とし込み、ばらつきや偏りがあるのかを検証してみたいです。年代ごとの偏りから、ある種のマーケティング施策が影響しているのではという仮説を立てることができ、実践演習で学んだ知識が非常に役立ちました。 平均値の使い分けは? また、単純平均だけでなく、加重平均や幾何平均など、状況に応じた平均値の使い分けが正しい分析につながるということを再認識しました。さらに、数字のばらつきを評価するために、標準偏差のような指標を実際の業務データで算出し、その計算方法や数字の感覚を磨いていきたいと考えています。

データ・アナリティクス入門

卒業生もお宝!データ分析で見えた新視点

ファネル分析の新たな視点 最後に学んだファネル/ダブルファネル分析は、とても印象に残りました。感覚的にファネル分析は理解しており、業務で使っていたのですが、購入後の顧客の動きを分析するためにダブルファネル分析が効果的であることが、新たな知識となりました。 卒業生追跡の重要性とは? 私は大学職員として、在学生の動きを分析することがまず重要ですが、卒業後の卒業生の動きを追いかけることも同様に重要だと感じました。大学の評価を高めるためには、卒業生が社会で自分の大学をどのようにアピールしてくれるかが今後の鍵となるのです。 意見収集体制の構築方法 在学生だけでなく、卒業生の連絡先もストックしておき、大学に対する意見やフィードバックを常に受け取れる関係を築いていきたいと思います。また、大学内だけでなく、外部の意見も蓄積してデータ化する体制を構築する必要があると考えています。

データ・アナリティクス入門

比較で見つける学びのヒント

比較はなぜ大切? 分析において、比較が本質であることを再認識しました。何かと比較することで評価が可能になり、比較しなければ正確な評価は得られないと実感しました。 同条件比較って? また、評価の際には同一条件、すなわち「Apple to Apple」の比較を意識する重要性も感じました。分析の第一歩は仮説の立案から始まり、その仮説を検証するために、何と何を比較すべきかを明確にする点が印象的でした。 業務分析の極意は? 日々の業務では、自分自身のデータ分析はもちろん、他のメンバーや関係者が行った分析も、このプログラムで学んだ体系化された論点を用いて見極め、改善点を具体的に指摘できるよう努めたいと思います。 爆撃機から学ぶ? さらに、学習事例として紹介された爆撃機の事例は、一見とらえにくい対象にどのように着目し、考察を展開するかについて大変興味深く感じました。

「分析 × 評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right