データ・アナリティクス入門

データ分析で見えた本当の価値とは

データ分析の目的を明確に データ分析は、目的を持たずに取り扱うと、ただの意味のない数字でしかありません。そのことを今回の学習で目の当たりにすることができました。データ分析を行うにあたっても、なぜその分析をするのかという背景が見えなければ、同じ数字でも全く違った見え方をしてしまいます。そこで重要なのは、何を目的として分析を行うのかを明確にすることです。目的意識を持ち、定量的にデータを取り扱うことの重要性を学びました。 データで組織をどう活性化? 施策推進について考えると、個々の受付完了指標から組織や部単位での比較まで、データの切り口は多岐にわたります。組織が正常に稼働しているか、個人については「自分は頑張れているか」を評価することができます。さらには、何をもっと伸ばし、何を改善すべきか、メンバーのモチベーションの維持・向上のためにデータを利用したいと考えています。 データの伝達手段は? データを出すタイミングについては、デイリーにするか毎月末にするかなど様々な選択肢があります。組織やプロジェクトチームが活性化するための指標として、データを積極的に活用していきたいと考えています。データの伝達手段もまた多様で、メールや対面、ミーティングなどがあります。伝えたい内容、そのボリュームや重要度に応じて手段を使い分け、効果的に展開していきたいと思います。

戦略思考入門

戦略思考で新製品評価を徹底分析

フレームワーク活用の意義とは? 戦略のフレームワークに関する知識を整理し、それを活用することで視野狭窄を避けるとともに、分析視点の抜け漏れを防げることが理解できました。また、戦略が自身の業務だけでなく人生設計にも応用できることを学びました。ただし、フレームワークの活用は戦略の第一歩に過ぎず、ユニークな戦略を立案するためには地道に考え抜くしかないことも再認識しました。 教授の意見をどう活かす? 自社の医療機器の新製品に対する教授からの評価を本国に伝える際には、教授のコメントをそのまま伝えるのではなく、戦略的に分析してから伝えることが重要です。教授の影響力や専門、属性情報に基づいてフィードバックの重要性を正当化し、指摘された改善ポイントを重要度と難度の二軸で分類し、優先順位を付けることが求められます。また、40名のドクターに新製品を使用してもらい、アンケートを集めましたが、ミクロな情報をマクロな視点で整理するために、戦略的な思考で分析していきたいと思います。 新製品評価の次のステップは? 新製品の評価については、まず社内のメンバーと方向性を決定し、その後、教授からのフィードバックを9月中旬までに分析し、本国と今後のアクションについて合意を得る予定です。さらに、40名の先生から得られたアンケート回答に基づき、ポジショニング戦略を立案します。

データ・アナリティクス入門

過去との比較が教える成功のカギ

分析目的は何? 分析の目的やゴールを明確に決めることは、分析の方向性や手法、評価基準を正しく設定するために非常に重要です。明確な目的がなければ、分析結果がどのように活用されるか不透明となり、効果的な判断が難しくなってしまいます。 比較はどう考える? また、分析の本質は比較にあります。過去と現在のデータや異なる状況を比較することで、パターンや傾向が明確になり、最適な選択や戦略を導き出すことができます。 SNS比較で何が見える? 私自身の仕事においては、過去のSNSキャンペーンを期間ごとに区切り、比較することで、これまで見えていなかった結果が浮かび上がると感じました。ただやりっぱなしにするのではなく、過去との比較から数字の意味や背景が見えてくるため、結果の解釈がより具体的になると思います。たとえば、フォロワー数やエンゲージメント数の推移だけを見るのではなく、過去のキャンペーンと比較することで「なぜ今この結果が出ているのか」という背景に迫ることができます。 データ活用はどう? さらに、実際にデータを活用してマーケティングキャンペーンを企画することも有効です。小規模なプロジェクトを自ら立ち上げ、仮想のデータセットを使用してキャンペーンを分析することで、製品ごとの購買データに基づいた最適な広告戦略を立てる試みが可能になると感じました。

データ・アナリティクス入門

複数仮説で切り開く学びの道

仮説はどう組み立てる? 仮説を考える際、3Cや4Pなどのフレームワークを活用することで、複数の仮説を網羅的に立てる手法に改めて気づかされました。これまでマーケティングのツールとしてしか意識していなかった考え方も、整理のための有効な手段となることを実感しました。 日常業務で仮説考察は? また、日々の業務の中で仮説を考え続けることにより、自分自身の業務への向き合い方を変えていきたいと考えています。 新サービスの評価はどう? 新サービスの提供時には、仮説を一つだけ立てた結果、分析や報告の内容が浅くなってしまい、納得感に欠ける部分があったと感じました。頭の中にはもっと考慮すべき点があったにもかかわらず、十分に明文化できなかったため、結果として不十分なものになってしまいました。 再挑戦の決意は? この現状を踏まえて、改めて複数の仮説を考え直し、分析と報告を再度やり直す方向で進めていこうと考えています。 案件分析の進め方は? 現在、2件の案件で分析が必要とされています。1件目は、半年前に提供したサービスの展開状況と今後の展開について、2件目は1年前に想定したサービス利用状況を再度確認する業務です。各案件とも、現状のデータを収集し、フレームワークを用いて仮説を立て、過去の想定と現状との違いを明確にする形で分析を実施する予定です。

クリティカルシンキング入門

切り口で解く学びと発見

どう分解する? データを分解して理解するためには、対象を個々の要素に分けることが重要です。特に、When、Who、Whatといった切り口を活用することで、分析がスムーズに進むと感じました。問題に直面した際には、まずこれらの視点に当てはめることを意識する点が良いと思います。 分析は広がる? 今回の総評では、具体的な手法としてWhen、Who、Whatを用いながらデータを分解するアプローチが評価されています。さらに、より多角的な視点を持つことで、分析の幅が一層広がる可能性があると感じました。 他の切り口は? また、思考を深めるための問いとして、WHO、WHAT、WHEN以外にどのような切り口が考えられるか、またMECEに分解する際に意識すべきポイントは何かといった疑問が提示されました。これらの問いかけは、多面的にデータを観察する習慣を身につける上で大切だと考えます。 管理法はどう? プロジェクト管理においても、この手法は進捗管理や不具合管理に活かせるでしょう。既に使用しているツールの補助として、まずはWhen、Who、Whatを当てはめることを意識し、課題の抽出に役立てることができます。また、グラフ化も可能なデータ収集を心がけ、評価のポイントを事前に決めることで、より効果的な分析が期待できるでしょう。

データ・アナリティクス入門

理想と現状のギャップで見える未来

理想と現状はどう違う? 何か問題が生じると、つい目の前の課題にとらわれがちですが、理想の状態と現状を比較することこそが、本当の問題や課題を明確にするために重要だと感じました。これまで漠然と考えていたことが、言葉として整理され、しっかりと理解できるようになったのが印象的です。 整理解決の手法は? また、整理された問題に対しては、ロジックツリーやMECEの手法を用いることで、より正確かつ詳細に課題を捉え、その解決策へとつなげる重要性を実感しました。単に現状を把握するだけでなく、目指すべき姿に向けた具体的なアプローチを考えるプロセスが、問題解決において効果的であると確信しています。 評価をどう転換する? さらに、現状の評価についても、単にマイナスな状況を改善するのか、あるいはプラスに転換するのかという視点を持つことで、解決策がネガティブな側面だけでなく、ポジティブな側面にも働きかける可能性があることに気付きました。例えば、売上が順調に伸びている現状であっても、どの要因がその結果を生み出しているのか、数字だけでは説明がつかない部分があると感じました。こうした状況では、現状から目標に至るまでの具体的なアプローチを詳細に分析することにより、現在の売上についても明確な説明が可能になるのではないかと考えています。

戦略思考入門

VRIO分析で見つける新たな視点と価値

VRIO分析で競争優位をどう築く? VRIO分析は、差別化のポイントを見つけるフレームワークとして有効です。この分析は以下の4つの視点から施策を評価します。 - 経済価値(Value):顧客にとって価値があるか。 - 希少性(Rarity):その要素がどれだけ希少か。 - 模倣困難性(Imitability):模倣するためのコストが高いか。 - 組織(Organization):組織体制が適切に整備されているか。 経済価値を再考する方法 自社が保有する優れた経営資源を明確にすると、競争優位性を構築できる組み合わせを考えることが重要だと学びました。 経済価値について考えることで、私は自身の業務に対して新たな視点を持つことができました。課題に集中するあまり、本当に求められているものを見落としがちになります。これを機に、顧客のニーズをより把握することを再検討したいと考えています。具体的には、どのようなコンテンツが求められているかアンケートを実施し、施策の妥当性を確認します。 SNS活用とアンケートの重要性 広報活動においては、今後SNSなどを活用してアンケートをとり、求められているコンテンツが何かを明らかにします。得た回答から経済価値を見つけ出し、実現可能なものを具体化して広報活動に活かしていく予定です。

データ・アナリティクス入門

仮説から解決へ!実践の軌跡

問題解決はどう進む? 問題解決の4ステップとして、まず「what」(問題の明確化)、次に「where」(問題個所の特定)、その後「why」(原因の分析)、そして「how」(解決策の立案)という流れで整理する方法が紹介されています。各ステップが順序立てて説明されているため、全体像を把握しやすく、実際の問題へのアプローチがより明確になります。 仮説検証はどうする? 仮説を立てる際には、複数の仮説を同時に検討し、それぞれに網羅性を持たせることがポイントとして挙げられています。また、仮説を検証するために、どの比較指標を選ぶのかを意識してデータの評価を行う大切さも感じました。 データ収集はどう考える? データを収集する際の注意点として、まず「誰に聞くか」と「どのように聞くか」を慎重に考え、比較可能なデータの収集を怠らないことが重要です。さらに、反論を排除するためにも、対立意見をも十分に考慮した情報収集が求められています。 分析計画はなぜ大切? 最後に、分析に取りかかる前に、設定した仮説を反映した分析計画表を作成する意義が強調されています。特に、経験の浅いメンバーと共に仮説の設定プロセスや必要なデータ収集、効果的な分析方法について議論することで、より深く問題解決に臨む体制を整えることが可能になります。

データ・アナリティクス入門

ゼロから始める客観分析術

どの分析方法が有効? 問題を特定する際のアプローチについて、分類や分解の手法、考え方の基本を身につけることで、さまざまな課題に対してゼロから悩むことなく、正しい分析を進められると実感しました。学習の中ではプロセスの分解に重点を置いていましたが、他の方法についても幅広く覚えておきたいと考えています。 提案の見直しは必要? 実業務においては、顧客への提案で解決策ありきで進めてしまうケースがあり、都合の良い分析になってしまうことがあります。こうした提案は初めは良い印象を与えるかもしれませんが、本質的な課題解決にはつながらず、長期的には評価を下げるリスクがあるため、業務の進め方を見直す必要があると感じました。まずは、これまで学んだ分析のステップに基づき、客観的かつ正確な分析を実行した上で、最適な解決策を提案することが重要だと思います。 行動計画はどう決める? 具体的な行動としては、実業務で特定のサービスに依存せず、客観的で正確なデータ分析を徹底し、複数の選択肢を比較検討することが求められます。そして、適切な判断基準を設定して最適な解決策を提案することを意識します。加えて、提案後の振り返りを行い、実施した解決策の効果をデータで検証する仕組みを整えることで、継続的に提案の機会を創出できると考えています。

データ・アナリティクス入門

仮説とデータが紡ぐ物語

分析の始まりはどう? データ分析は、まず解決すべき問題を明確にし、最終的な結論のイメージを持つところから始まります。すなわち、最初に仮説を立て、what、where、why、howという流れに沿って必要な情報を整理することで、分析の方向性を定めることが大切です。 データはどのように収集? 次に、必要なデータを収集します。その際、実際の数値と割合の両面から確認を行い、一方に偏らないバランスの取れたデータ把握を目指します。必要な情報が不足している場合は、自らデータを集める方法も検討すべきです。評価方法においては、あいまいな表現や中間的な回答を避けることが重要です。 図表でどう伝える? 収集したデータは、次に加工して見やすい図表などにまとめます。どのような表現方法がデータの散らばりや相関を直感的に理解させるかを判断し、情報を具体的かつ明確に提示することが求められます。 仮説はどう再検証? そして、整理されたデータをもとに、当初の仮説に沿って分析を進め、発見に結びつけます。この過程では、what、where、why、howの各側面で原因と結果を再確認し、客観的な視点で全体のストーリーを見直すことが大切です。また、既存の仮説にとらわれず、新たな価値ある仮説の構築に努めることも求められます。

データ・アナリティクス入門

目的再確認で拓く未来

なぜ目的は大切? 分析とは、比較を通して物事を評価するプロセスです。まず、データ収集や具体的な分析を始める前に、はっきりとした目的を設定することが不可欠です。目的が定まらない分析は、結果として次の行動に結びつかず、単なる数字遊びになってしまうリスクがあります。 どのように対象を選ぶ? そのため、目的を明確にし、適切な対象を選ぶとともに、多角的な観点から正しく比較することが大切だと考えます。データ分析に入る前に一度立ち止まり、目的に立ち返る余裕を持つことが、成功への第一歩となります。 どのように傾向を見る? 具体的には、顧客の属性データやアンケート結果から傾向を読み取り、次月以降の施策に役立てています。また、自身の働き方に関しても、どの業務にどれほどの時間を費やしているかを他者と比較し、業務効率の向上を図っています。 どうやって振り返る? このため、毎週金曜日に10~15分間の業務棚卸しの時間を設け、週次および月次での振り返りを実施しています。さらに、1on1などの機会を通じて、業務時間の使い方について他者から意見を聴取し、比較することで、より実践的な改善策を模索しています。一方で、対顧客の分析に関しては、常に目的を再確認し、施策ありきの分析にならないよう注意を払っています。

データ・アナリティクス入門

同条件で実感!比較のヒント

どうして比較するの? 分析の基本は「比較」にあります。しかし、比較を行う際には、正しい対象同士を照らし合わせなければ、正確な結果は得られません。たとえば、単に全体の平均値を比べるのではなく、同じ条件下(Apple to Apple)での比較を意識することが重要です。具体的には、ある施策の効果を評価する場合、対象は施策を受けたグループと、受けていないグループに限定し、その効果が明確に反映されるように設定する必要があります。また、比較を行う際は、外れ値の有無やデータの対象数、そして分析の目的に沿った比較がなされているかどうかにも注意を払うことが求められます。 比較の実践はどう? 現在、売上やマーケティングの集計そのものはしていませんが、常に「比較」を意識しながら、比較対象が正しいかどうかを確認する視点を持つよう心がけています。目的に合った分析であるかを常に考え、比較した結果をどのように的確に示し、他の人にわかりやすく伝えるかという点が大切だと思っています。 結果提示の工夫は? 今週の学習内容については、特に疑問に感じた点はありませんでした。ただし、グラフや推移グラフ以外の方法で、他の人に理解しやすい分析結果の提示方法について、どのような工夫がされているのか知りたいと感じています。

「分析 × 評価」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right