データ・アナリティクス入門

問題解決に役立つ分析ステップの探求

問題解決に必要なステップとは? 「What, Where, Why, How」のステップを意識することで、さまざまなことに安易に飛びつくことなく、順序立てて問題を解き明かせると感じました。問題の中で、利益を上げるために何をすべきかという設問に対しては、各項目の利益の占有率を金額で換算し、数字を比較することでインパクトの大きい箇所を見つけ出しました。まさに「分析は比較なり」と実感しました。 ギャップをどう示すか? 問題解決のプロセスとして、あるべき姿と現実を明確にし、そのギャップを数字で示します。収益構造を変数のロジックツリーに当てはめ、それぞれの変数ごとに金額換算して比較することで、インパクトの大きい部分を特定します。 効果的な分析の手順 具体的なステップとしては、まず目的を明確にすることから始めます。次にロジックツリーを作成し、変数分解と層別分解を行います。特に、ロジックツリーを2種類作る際は、その目的を明確にすることで手段が目的化しないように注意します。意味のある分析の切り口を意識することが重要だと考えています。それを達成するためにも、目的の明確化が大切であると感じました。

データ・アナリティクス入門

中央値でひも解くデータの秘密

代表値と分布はどんな意味? データ分析では、まず代表値と分布の理解が重要です。代表値には単純平均、加重平均、幾何平均、そして中央値の4種類があり、それぞれの特徴を把握する必要があります。一方、分布は標準偏差を用いて表現され、対象に応じた適切な代表値を選ぶことが求められます。 中央値はどう計算する? そのため、中央値や標準偏差といった指標は数式に基づいて算出されますが、原理原則を理解すればエクセルの数式機能を活用して求めることが可能です。 平均と中央値の違いは何? この考え方を踏まえて、昨年度に最も支払い額が大きかった顧客のデータを例に、代表値と分布を算出してみます。特別な事情で多額の支払いが発生しているため、単純平均と中央値の数字の違いを確認し、代表値としては中央値のほうが適していると考えられます。 期間内のデータ比較はどう? さらに、対象となるのは2024年4月から3月までの期間の顧客データです。各顧客に対して毎月の支払額の単純平均と中央値を求め、また支払いの内訳に記載されている各顧客品番ごとの費用についても、同様に毎月の単純平均と中央値を算出して比較していきます。

データ・アナリティクス入門

数字から広がる仮説の世界

数字加工はどう進む? 3週目では、仮説を立てるために数字をどのように加工するかを学びました。数字から意味を見出すには、まずデータを加工し、次にグラフなどでビジュアル化するという手順が重要です。具体的には、データの代表値を用いた加工や、ばらつきを感じた際には標準偏差を活用するなど、データの特性に応じた方法を選択します。これにより、グラフ化された情報から傾向をより把握しやすくなります。 手法の応用は? また、データ加工の手法が多様であることを理解した上で、毎月集計している売上や顧客層の分析にどの方法が適用できるのかを検討する意欲が湧きました。顧客層に特にばらつきが見られなくても、着目する観点によっては標準偏差を使った加工が有用である可能性があります。そのため、まずは代表値を用いてデータを整理し、グラフにしてみることが考えられます。 売上分析の疑問は? さらに、毎週抽出している売上データに目を向け、加工を通じて仮説を立てる試みも進めたいと思います。売上が高い日と低い日があるという傾向に注目し、どの代表値を活用するのが最適かを検討しながら、より具体的な仮説を構築したいと考えています。

データ・アナリティクス入門

ビジュアルで味わう分析の面白さ

平均の意味は? 複数の平均(単純、加重、幾何)をビジュアルで理解できたのは大変参考になりました。計算自体は表計算ソフトを使用すれば難しくないものの、イメージをしっかりと思い出し、目的に合わせて正しく使用することが大切だと感じます。また、今まで漠然としか捉えていなかった標準偏差も、今後、平均とデータのばらつき具合を説明する際に大いに活用できると考えています。 分析方法はどう? 膨大な顧客情報や生産実績の分析においては、単純平均や幾何平均を用いた有用な分析方法があると実感しました。売れ行き製品の傾向をグラフで表現する際、散布図の利用も面白い発見です。これまで棒グラフによる比較が中心でしたが、何をアピールしたいのかを一歩深く考え、見せ方を工夫する必要性を感じさせられました。 データ活用はどう? 所属する営業グループ内でも、データ集計方法や見せ方に関して工夫が求められています。これまで、従来のやり方を盲目的に踏襲するか、各自の感覚に頼る方法に偏っていたため、私がリーダーとして理論に基づいたデータ抽出とグラフ選択を整理し、より効果的な活用方法を提示していきたいと思います。

アカウンティング入門

ビジネス数字の裏側に迫る!P/LとB/S徹底理解の実践録

--- P/LとB/Sのつながりとは? P/LとB/Sのつながりについて理解が深まりました。ビジネスモデルとそれぞれの数字がどのように結びついているのかを知ることができ、非常に興味深かったです。単なる数字ではなく、その背後にある意味を読み解けるようになったと感じました。また、総合演習を通じてさまざまな業界について考えることで、理解が一層深まったと思います。 目指す姿との一致を確認 今後は、自社のP/LとB/Sが会社の目指す姿と一致しているかどうかを確認したいと考えています。もし目標と異なる状況であれば、その理由を追求し、改善策を模索したいです。他社の良い取り組みを参考にして、積極的に取り入れていきたいとも思います。 自社と他社の情報をどう活用する? 具体的には、実際にP/LとB/Sの両方を確認し、不明な点は経営や経理に相談して理解を深めます。また、自分の業務がどの部分とつながっているのかを考えながら、数字を読み解くようにします。さらに、他社についてもP/LとB/S以外に、それらに対するレビューなどの情報がないか調べ、総合的な理解を目指します。 ---

クリティカルシンキング入門

データ分類で在庫管理を効率化する方法

実践で見えた真実は? 学んだこととして、まずは実際に手を動かし、様々な切り口でデータを分類してみることの重要性がありました。その際、5W1Hといった手法を活用しつつ、単純に機械的に分けるのではなく、どのように分ければ意味が出てくるかを考え、仮説を立てることが大切だと理解しました。仮説を立てることで傾向を捉えることができますが、その傾向だけにとらわれず、他に絶対的な傾向はないのかをさらに異なる視点から分析することも重要です。 在庫管理に活かす? 自分の業務では、販売会社の在庫や売上の管理にこのアプローチが役立つと感じました。具体的には、在庫が増える要因や売上が変動する要因の分析に応用できると考えています。例えば、在庫削減の計画を検討する場合、在庫増加の原因を詳細に分析することが、具体的な対策につながると考えています。 売上計画はどうなる? 私が担当している地域では、計画通りに販売が進まないことで在庫が増えているという現状の課題があります。その打開策を考えるために、どの商品がどの顧客先で計画と実績に差が出ているのかを分析し、問題を特定したいと思っています。

クリティカルシンキング入門

問いと対話で未来を紡ぐ

適切な問いの力は何? 問いを引き出す才能は決して悪いことではありません。以前、物事を考えすぎて苦しんでいた時期があり、リスクなどの悪い面を多角的に考えることで、頭痛を引き起こすこともありました。しかし、講義でその思考が瞬時に発せられる言葉の原点になっているという話を聞き、少し救いを感じることができました。今後は、考えすぎることなく、適度なバランスで物事を捉えていこうと思います。 対話はどう変わる? 経営陣や上層部との会話においては、ビジネス上の対話の在り方を見直すことで、意思疎通やコミュニケーションの頻度が向上するのではないかと考えています。また、現場で実践できることや管理層としての役割について、将来を見据えて具体的に検討していこうと思います。 聞く姿勢の意味は? 上層部との会話では、話を聞いたタイミングで問いや分析を意識し、復唱することで相手の意図を正確に捉えます。無理に解決策を提示するのではなく、対話の中から自然に問いと答えを導き出すよう努めます。出てきた意見は継続的にメモに取り、共有しながら認識のずれが生じないよう確認していきたいと考えています。

データ・アナリティクス入門

分析の力で新規事業を成功へ導く

分析とは何かを考える 今週、私が学んだ点は以下の2つです。 1つ目は、「分析とは比較すること」です。比較しなければ、その数字から何が言えるのかわからず、数字を出すだけではあまり意味がありません。 分析目的の明確化が重要 2つ目は、「分析の目的を明確にすること」です。何のためにデータ分析を行うのか、それを行うことで自分は何を成し遂げたいのかを明確にしなければ、データの整理や加工の方法もわかりません。 実証実験の進め方と意義 私の部門では新規事業開発を担当しており、日本各地で実証実験を行っています。実証目的に紐づいたデータ取得の設計と分析・評価を行い、実証結果を基に次の方向性を探る際には、数字を用いて周囲に納得感のある説明を行うことが求められます。 データ分析のスキルをどう向上させるか 現在の業務の方向性を整理し、実証実験の意義と目的を改めて明確にすることが重要です。また、データ分析を専門とする教授とディスカッションしながら実証実験のデータ取得方法を設計し、実証後のタイミングで有効なデータを用いて自身で結果を評価できるようにすることが目標です。

データ・アナリティクス入門

データ分析の新常識!実践で学んだ秘訣

データ分析の比較とは? Week1で「分析とは比較である」と学びましたが、Week6の実践演習でその意味を実感しました。 アンケートの対象者を選定する際、データ収集後の分析においてどのような比較を行うかを念頭に置くべきだということを改めて感じました。また、分析を行う前段階で、最終的なアウトプット(例:切り口やグラフ等のビジュアル)をイメージしておくことの重要性も学びました。 収支分析のステップは? 収支分析を行う際には、常に様々な切り口を意識することが必要です。切り口を考えた後、「what→where→why→how」とステップごとに分析を進めることも重要です。その結果、確度の高い分析が可能になると感じました。 このような様々な切り口と「what→where→why→how」というステップを意識し続けることで、分析結果を効果的にアウトプットできるようになります。また、数値の性質やグラフについての理解を深めるために探求を続けることも重要です。実践を通じて学んだことを自分の活きた知識とするとともに、書籍や研修を通じてさらに知識を深化させていきたいと思います。

戦略思考入門

差別化戦略を考えるヒント

顧客の価値はどう見極める? ターゲットとなる顧客にとって、価値のあるものをしっかりと捉えることが重要です。顧客が魅力を感じなければ、その差別化は意味をなさないからです。また、顧客視点で誰が競合となり得るか、思わぬ業界や業種が競合になる可能性も考慮する必要があります。さらに、実現可能で持続可能な差別化、すなわち他社にすぐ真似されない対策を意識して差別化施策を打ち出すべきです。 営業とマーケティングはどう活かす? 営業においては、顧客が求めているものを把握し、他社の差別化ポイントを考慮しつつ、自社の差別化要素を整理することが求められます。この情報を踏まえた上で日々の営業活動や商談に取り組むことが重要です。マーケティング部門でも、新商品や新サービス・ソリューションを開発する際に、今回学んだ差別化の考え方が役立つ場面がありそうです。 自身の業務にすぐ活かすのは難しいかもしれませんが、自社の商品やサービスを考える際には、顧客にとって価値があるか、他社と比較してどうか(真似されにくいか、既に行われているか、その規模感はどうか)を常に意識する習慣をつけることが大切です。

データ・アナリティクス入門

データ分析の新しい一歩を踏み出す

データ分析の基本とは? データ分析とは、単なる集計ではなく、比較を通じて意味を引き出すことです。具体的には、有意義なデータを比較し、仮説を立て、その仮説を検証するために、比較対象以外の条件を可能な限り一定に保ちながらABテストを実施することが求められます。 エンゲージメントを高めるためには? データ分析においては、適切な情報を選別することが重要です。例えば、SNSコンテンツのオーガニックポストのエンゲージメントデータを見ることで、どの国でどのようなコンテンツが注目されているかを理解することができます。その上で、さらに具体的に、投稿の時間帯やフレーズ、サムネの違いに焦点を当てたテストを行うことで、より効果の高い手法を見つけることが可能となります。 データの傾向を見極めるには? したがって、データの比較を深め、傾向を分析することに時間と労力を割く価値があります。決まった時間にインサイトをモニタリングし、データの傾向を知る時間を計画的に設けることが大切です。これにより、仮説を立て、有意義な投稿テストを実施することで、より深い知見を得られるでしょう。

アカウンティング入門

テーマパークに隠れた会計学

テーマパーク会計はどう見る? あるテーマパーク事業を営む企業では、人件費を販管費ではなく売上原価に計上しているという事実に驚かされました。テーマパーク自体が商品であり、そこで働くスタッフが商品である登場人物として売上に貢献しているという独自の考え方が、会計処理に現れているのだと思います。この事例を通して、「帳簿をつける際には勘定科目に正解はなく、会社が収入や支出をどのように位置づけるかが重要」という言葉の意味が、より深く理解できたと感じます。 ソフト導入で悩む理由は? 会計ソフトの導入支援を行う際には、まずクライアントの事業内容をしっかりと把握し、どのような売上、費用、資産、負債が発生し得るかを具体的に想定することが重要だと考えています。入力したデータをどのようなセグメントで分析すれば参考になるのか、イメージを膨らませながらお客様と対話していきたいです。そのためには、事前にホームページなどを通じて事業内容を確認し、情報が不足している場合には同業他社の財務諸表の構造を調べた上で、初回の打ち合わせで不足情報をヒアリングしながら支援を進めていくつもりです。

「意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right