デザイン思考入門

参与観察で発見する新たな強み

実践学びをどう見る? 新規事業の開発やマーケティング設計に、そのまま実践できそうな学びを得ることができました。これまで、クライアントのサービスを体感しながら感じる心理的変化に注目してきましたが、実際に現場や参与観察という体系化された視点があることは初めて知りました。今後は、こうした視点をより効果的に使い分けていきたいと考えています。 隠れた強みを発見? 参与観察を通じて、クライアント自身がまだ言語化できていなかった強みに気づけた点は大きな発見です。また、あるサービスで「2週間お待ちください」というメッセージを目にした際、その言葉一つで利用者が他の選択肢を検討してしまうという現実を実感しました。 仮説はどう検討する? さらに、ユーザーインタビューは取り組みやすい手法であり、私は年間に50~100回ほど実施しています。しかし、深掘りが充分でないと感じることが多く、その原因としては、仮説設定や事前のインタビュー設計の甘さ、また自分自身の解像度の低さが挙げられると思います。インタビュー実施前にどこまで解像度を上げ、仮説を立てるべきかについて、皆さんのご意見をお聞かせいただければと思います。

デザイン思考入門

定性分析で見えた地域の本音

地域振興の意義は? まちづくり活動の一環として、自治会の地域振興計画書作成に取り組みました。地域住民へのアンケート結果をもとに、ワークショップで各課題の重大度と緊急性を2軸に評価し、課題を整理する作業を行いました。これにより、まさに定性分析を体感したと実感しています。 定性分析の限界は? ただし、今回の取り組みは定性分析の段階であり、コーディングの考え方までは取り入れていません。そのため、今後、具体的な行動計画の策定や検討において、コーディングを導入する可能性があると感じています。 共通理解の深め方は? また、地域住民の課題感を言語化することが、参加者間の共通理解の深化に寄与し、より有意義なワークショップへとつながると考えています。学びがさらに深まった時点で、実践に移し、その成果を記録していく予定です。 学びの整理方法は? 今回の経験で実施してきた取り組みが一つのフレームワークとして整理されたことは、理解の進展に大いに役立ちました。今後は、この学びを実践に定着させるとともに、同僚や団体のメンバーにも同じフレームワークを十分に説明できるよう、さらなる理解の深化を目指します。

データ・アナリティクス入門

問題解決を極める!広告業での実践ノウハウ

プロセス分解が鍵となる? 原因の探求について学びました。特に、問題の原因を探る方法としてプロセス分解が有効であることを知りました。問題の箇所を絞るためには、プロセスを詳しく分析し、仮説を立て、その仮説を検証することが重要です。このプロセスには、文データ分析や仮説の検証などのステップが含まれます。 広告の効果検証とは? 広告業に携わる私にとって、こうした方法論は日常的に行っていることですが、改めて体系的に学ぶことの意義を感じました。特に、広告の効果検証においてはPDCAサイクルを用い、データ分析を通じて仮説を立て、その仮説を検証するプロセスが連続的に行われます。この週に学んだ内容は、日々の業務におけるステップのヌケモレの確認に活用していきたいと思います。 仮説の重要性を再確認? データに触れることを日常的に行い、データを一度集めただけで満足せず、常に仮説をブラッシュアップし続けることが必要です。同時に、データを継続的に収集し、これらを繰り返し行うことで課題解決ソリューションに繋げることができます。また、A/Bテストも広告業務で実施しており、学んだ内容を実践に活かしていくつもりです。

クリティカルシンキング入門

短時間で学ぶ文章化のトレーニングの極意

学んだことをどう言語化する? 学んだことを言語化するのは難しいと感じています。時間をかければ深く書けるかもしれませんが、逆に複雑になりすぎて適切な深さがわからなくなることがあります。 短時間で文章化するためのトレーニング法 短時間で効率的に文章化するトレーニングは重要で、繰り返し実施していく必要があります。このトレーニングを通じて、問い、イシュー、根本原因、課題の違いを意識することができます。 問題解決ミーティングでの活用 具体的には、業務ユーザーと課題解決を議論するミーティングや、問題解決を自ら進めるための資料作成、簡潔に要点を伝えるためのメールやチャットで役立ちます。また、チームメンバーの問題解決や資料レビューを行う際、一緒に問題解決の糸口を探す場面でも重要です。 相手に伝わりやすい文章作成とは? 日常で文章を作る場面が多いため、相手が理解しやすいように、相手の立ち位置も考慮しながら論理的に文章を作成することが求められます。さらに、図表を用いる際には、多くの表現方法に触れ、その問いを解決するために最適なものを選択できるように引き出しを増やしておきたいと考えています。

クリティカルシンキング入門

問いを極める!課題解決の一歩

問題点は正しく見えてる? 課題解決を考える際は、まず問題点が何かを洗い出し、さらにその問題点が本当に正しいのか見つめ直すことが大切であると感じました。また、定めた問題点を皆で確認しながら議論を進めることで、的確な議論が実現できると学びました。 会議の議題は整理済? 会議では、始める前にイシューを明確にすることで、話がぶれることを防げると実感しました。 企画立案の仮説は? 新商品企画を立案する際には、アンケートを実施して回答を集計する前に、課題の仮説を立てやすくするために問題点を整理しておくことが重要だと考えました。回答を集めるだけでなく、課題の検証としてアンケートを活用することで、現状の課題や商品の課題を整理しながら進めると、途中でコンセプトがぶれにくくなることを学びました。 問いは効果的? 普段から「問い」に意識を向け、直感で問題を捉えるのではなく、問題点が本当に正しいのかいろいろな方向から考えることが求められます。捉えた問題点を相手に的確に伝えるために、話を整理して伝えることや、課題を共有しながら確認して進める姿勢が、より効果的な議論や企画につながると感じました。

アカウンティング入門

BSで読み解く学びの現場

経営戦略はなぜ? 震災以降、ある大手テーマパーク運営企業は、現預金を潤沢に保つ経営方針へとシフトしました。同じ企業内でも、マネジメントの考え方によって貸借対照表(BS)の内容が大きく変化する点に気付かされ、2011年の教訓が10年後のコロナ禍での経営に生かされていることも非常に興味深いと感じました。また、事業活動を捉えるための枠組みが、顧客、価値、活動、資源、資金の関係を分かりやすく図解している点も印象的でした。 授業でどう実践? ライブ授業では、事業内容が容易に想像できる企業をサンプルとして選び、次期幹部候補メンバーと共に事業活動フレームワークに基づいて仮説を立て、BSを考察する場が設けられました。実際の決算書を用いて答え合わせを行う際には、今回のアカウンティングで得た学びをメンバーにフィードバックする予定です。まずは、次期幹部候補メンバーにPLやBSの基礎について講義を行いながら、事業活動フレームワークを図解で説明し理解を促しました。弊社の顧客が製造業中心であり、メンバーも製造業の事業について想像しやすいため、その中の一社を選び、売上構成やBSを考察するワークも実施しました。

データ・アナリティクス入門

仮説と試行錯誤で切り拓く未来

仮説構築はどう始める? 仮説を立てる際には、3Cや4Pといった切り口を活用し、情報を整理することで仮説ストーリーを構築しやすくなります。仮説は結論仮説と問題解決のための仮説に分かれ、検証にはデータ収集が不可欠です。その際、誰にどのように聞くかを工夫することで、仮説に沿ったデータが得られると感じました。 計画検討は何を確認? お客様の活用コミュニケーションの計画を検討する場合、これまでの施策結果の課題、どの部分で課題が生じているのか、その原因、そして施策変更による改善策について、段階的に細分化して考える必要があると認識しました。仮説の流れは「What → Where → Why → How」という順序で検討することで、論理的に整理されやすいと感じています。 検証実施はどう進む? 一方で、自分の組み立てた仮説が正しいかどうかについて、常に不安を感じることがあります。授業では、仮説に疑問があってもまずは早く検証を回すことが大切であると指導いただきました。しかし、実際にその検証を迅速に進めるためには、どのようなアプローチが最適なのか、今後も試行錯誤しながら検討していきたいと思います。

クリティカルシンキング入門

データ分析で気づく新たな切り口の魅力

データ分析の新しい切り口は? データ分析において、単に数字を見るだけでなく、その切り口や追加する要素によって新たに得られる情報が異なることを学びました。データを視覚化することで、適切な切り口を見つける手助けにもなります。そのため、まずは異なる切り口でデータを分けてみることから始めていきたいと思います。 売り上げパターンはどう探る? 例えば、商品の売り上げを分析する場合には、既存顧客や新規顧客のどの層で売り上げが伸びているのか、また、新色と既存色のどちらが売り上げに寄与しているのかを確認する必要があります。 新商品の需要をどう予測する? また、新商品の市場性やニーズについても、どの年代や年齢層に需要があるかを分析することが大切です。このためにアンケートを実施し、そのデータを元に市場性を確認していきます。 昨年の売り上げデータの活用法は? 昨年発売した商品の売り上げについては、月ごとに分析を行っているため、データの分け方をさらに細かく見直し、実践に活かしたいです。新商品だけでなく、既存商品や周辺商品も含めて、相関性を確認することで、より深い洞察が得られると考えています。

データ・アナリティクス入門

思考の質を高めるMECEとMICE活用法

MECEの考え方とは? MECEの考え方は、切り口を重複させずに漏れなく設定することが重要です。どのような切り口が最適かを判断するためには、高い感度が求められます。これに関しては、分析の経験を積むことや、多方面からの意見を聞くことも必要と感じています。 ロジックツリーの活用法 ロジックツリーについては、論理的思考を活用することで、適切な判断ができるようになります。 MICEの活用には何が必要? MICEの考え方は、実務に役立ちそうで、特に顧客分析など日常的な業務での活用チャンスが多いです。「重複なく漏れなく」を実現することはその通りと感じつつも、切り口の設定によって重複を避けることが難しい場合もあり、その点をどのように克服するかが課題だと考えています。 BI分析へのMICEの導入 業務で作成しているBI分析において、MICEの軸を取り入れることにしました。切り口については様々な角度から実施し、どの分析が効果的であるかを検討します。また、ロジックツリーについては、既にパイプライン分析で似たことを行っていますが、改めてロジックツリーを用いた分析も進めてみようと思います。

データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

データ・アナリティクス入門

仮説検証で切り拓く成功の道

問題整理のポイントは? データ分析を進める上で、What、Where、Why、Howという問題解決のステップを行き来しながら整理することが非常に大切だと感じました。こうしたステップを意識することで、問題を深く理解し、的確な改善策を導き出すことができると思います。今までプロセスを細分化して考えることを怠っていた分、今後はその重要性を再認識し、確実に実行していきたいと考えています。 テスト検証の極意は? 特に、A/Bテストにおいては、条件を揃えて1要素ずつ検証することが成功の鍵であると改めて実感しました。これまでステップを踏んで分析を進めることはできていたものの、動きながら仮説を試し、データを収集する視点が不足していたと感じます。今後は、常に仮説検証とデータ収集を並行して進める必要があると認識しています。 実施環境をどう見る? また、実際に業務でA/Bテストを実施する際、特定の店舗でのみ実施していたため、環境要因に対する配慮が不足していたと感じました。今後は、各店舗ごとの環境差を考慮した上で、より均等な条件でテストを行い、信頼性の高いデータを得られるよう努めたいと思います。

データ・アナリティクス入門

データ分析で広がる新たな視点と可能性

データの深意を探るには? 各データを深く掘り下げ、その背後に何が見えるかを考えることが重要だと感じました。数値からクリック率やコンバージョン率を計算することで、新たな視点から現状を考察できると思います。また、問題に関連する要素とそうでない要素を分けて考える対概念や、適切な判断基準を設けて各案を評価する過程の重要性を学びました。常に思考の幅を広げることを意識することが大切だと感じます。さらに、A/Bテストを行うことで結果を比較でき、適切に検討を進められることも分かりました。 学んだ知識はどう活かす? 自分の業務にすぐに活用できるかはまだわかりませんが、今週学んだデータの応用や対概念の考え方は役立ちそうです。3W1Hのステップを繰り返しながら、丁寧に分析していくことが大切だと改めて感じました。 採用手法は最適か? 実行可能な業務として、採用活動にもこの手法を取り入れられるのではないでしょうか。採用ページのクリック数と応募者数のデータを取得し、ファネル分析や離脱ポイントを特定した上で、A/Bテストを実施すれば、最適なコンテンツや応募フォームを判断できると思います。

「実施」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right