データ・アナリティクス入門

データ分析で学ぶ効果的な解決策の作り方

比較方法って何だろ? 「比較」の方法には、代表値を使って比べる方法や、グラフなどで視覚的に情報を整理して見比べる方法があります。 目的は明確か? 定量分析の中で最も重要なのは、まず目的や問いを明確にすることです。目的達成に関連する要素を考えて仮説を立て、その仮説を検証するために必要なデータを集めます。そのデータを基に、インパクトやギャップ、トレンド、ばらつき、パターンといった視点から分析を行います。 手法はどう? 分析のアプローチにはさまざまな手法があります。例えば、ギャップを示すには横棒グラフを、トレンドを示すには折れ線グラフを、分布を示すにはヒストグラムや円グラフを、パターンを示すには散布図を用います。また、数字としては単純平均や加重平均、幾何平均、中央値を用います。データの散らばりを見る際には、分散や標準偏差を参照します。回帰分析やモデル化を用いることで、データの関係性を数式化することも可能です。 因果はどう考える? 重要なのは、相関と因果を混同しないことで、データに基づく正確な分析を行うことです。学校の成績向上や遅刻削減、大学進学実績向上といった課題も、思い込みではなくデータを活用することで、より効果的かつ効率的に解決策を見つけられます。教育関連の文献やデータから情報を読み解く能力を養い、勤務先の学校の課題に対してロジックツリーを用い、仮説を立て、データを集めてグラフ化し、仮説を検証していくことが求められます。特に、度数分布と散布図は非常に有用ですので、積極的に活用していきたいと思います。

戦略思考入門

本質に迫る!絶え間ない挑戦の秘訣

本質を理解するにはどうする? 本質を理解することは、簡単に言えても実践は難しいものです。ガリレオが物体落下の法則を発見し、ニュートンが万有引力を見つけました。しかし、それでも本質を完全に捉えているわけではありません。アインシュタインが相対性理論を提唱しましたが、それでも全てを説明するには至らず、未だに何かが欠けていると考えられています。したがって、本質を完全に理解するのではなく、むしろ理解していない可能性を認識し、仮説や定理を受け入れつつ、常に問い直して疑い続ける姿勢を持つことが重要です。この不断の努力は非常に難しく、挑戦を伴います。 時代の変化にどう向き合う? 法律や仕事の慣習も、ある前提条件に基づいています。しかし今日、米中摩擦やAI、地球温暖化などの影響で、その前提条件が大きく変化しています。もはやグローバル最適化は分断化の中で目指すべきものではなく、経済合理性も温暖化の課題を前に以前ほど盲目的に追求されるべきではありません。AIは、「働かざる者食うべからず」という鉄則に疑問を投げかけ始め、多くのことを考え直す時期が来ています。この先もサラリーマンとして働き続けるべきかどうか、定期的にAIと相談しながら検討していきたいと思います。 新しい生き方を探るには? また、ChatGPTのようなDeep Researchの技術も登場しています。この技術を利用して、定期的に収入とリスクのバランスの良い生き方を探り、もしサラリーマン以外の道を選ぶとしたら、どのような方法があるのかを確認していきたいと考えています。

デザイン思考入門

対話で紡ぐ未来への羅針盤

抽象と具体はどう? 定量・定性分析に加え、コーディング分析で述べられた「抽象度と具体化」の相互プロセスが非常に重要だと実感しました。私が実践した活動は、一般募集で参加者を募り「未来デザイン教室」を開催することから始まりました。その後、複数人を対象にマンツーマン・コーチングを実施し、事前のヒアリングシート(属性情報)、ワークシート(ありたい理想図)、オンライン対話の三種類の情報を活用して潜在的な問題点を明らかにし、今後の課題についてアドバイスを行いました。 問題の要点は何? これらの活動では、対話の中で抽象的な表現と具体的な表現を行き来させ、参加者が抱える問題や課題の全体像を共有するよう努めました。具体的な事象や数字に踏み込んで話す人、抽象的にしか表現できない人、あるいは言葉が体言止めに終始して動きのない人など、参加者それぞれの癖が見えてきました。そのため、具体的な発言が多い方には「つまり、要点は?」と問いかけ、抽象的な方には「結局、どんな意味になるの?」と解像度を上げるよう心がけました。この対話の往復により、全体像を俯瞰する視点が得られることが大きな気づきとなりました。 構図をどう捉える? また、定量・定性分析、コーディング、そしてフレームワークやプロセスを通じて「仮説の構図」を把握することができれば、隠れた領域や既存概念の硬直した部分を明確に特定しやすくなると感じました。アイデアが行き詰まった場面でも、課題の構図が見えることで、その構図自体を再構築でき、結果として新たな方向性が見えてくると考えています。

マーケティング入門

多角視点で開く学びの扉

マーケはどう捉える? マーケティングの定義は人それぞれの捉え方があり、どの考え方も広い意味でのマーケティングに含まれることを学びました。思考や仕組み、プロセス全体が一体となっているということを再認識し、異なる視点が必ずしも間違いではないという気づきも得ました。自分の商品だけでなく、顧客にその魅力を伝えるサイクルを確立し、最終的に顧客に選ばれる重要性を強く感じました。自分自身、もっと執念深く取り組む必要があると実感しています。 ブランドはなぜ必要? 現在の業務は技術を起点としたプロダクトづくりが中心ですが、顧客にそのプロダクトの魅力をしっかりと伝えるためには、ブランドづくりが不可欠だと考えています。魅力を感じてもらえるターゲットが存在するのか、販売の仕組みが適切かどうかを継続的に分析していくことが必要です。常に自分の考えが正しいか、適切かを問い直す姿勢が求められており、顧客のニーズに合致するかを判断するためのマーケティング的視点の習得と活用が今後の課題だと感じています。 顧客理解はどう進む? まずは、顧客が本当に求めるものを理解し、顧客の思考や行動を分析することから始めたいと考えています。コアファンの探索を通じて、その行動原理や商品の用途を再確認し、ユーザーストーリーマップを作成する予定です。また、顧客インタビューに際しては、対象者にブレがないか、質問内容が適切かどうかを十分に検討した上で実施します。仮説検証の際にも、一方的な判断に偏らないよう論点を整理し、ビジネスの勝ち筋を見出す努力を続けたいと思います。

戦略思考入門

フレームワークで戦略の扉を開く

3C分析の全体像は? 各種フレームワーク―3C分析、SWOT分析、バリューチェーン―の有用性が実感できました。まず、全体的な環境変化をとらえる3C分析では、目的の明確化、顧客市場、競合、自社の詳細な分析を行い、その上で戦略を立てる手順が非常に分かりやすかったです。 SWOTで何が見える? 戦略策定においては、SWOT分析が有効であると感じました。商品のポジティブな面だけでなく、ネガティブな面も洗い出すことで、場合によってはクロスSWOTを用いてどのような差別化が可能かを具体的に理解できました。また、バリューチェーンでは、各機能ごとに分けて整理する考え方が、日常で利用しているサプライチェーンの理解を深めるのに役立ちました。 戦略実行の核心は? プロジェクトの中長期戦略や直近の短期課題に対する運用計画を検討する際、なぜその取り組みを行うのか、何を強みに勝ち抜くのかを客観的に上位に説明し、合意形成を図る必要性が感じられました。これにより、ひと・もの・かねを獲得し、技術やビジネスの開発を加速させるための土台が整うと考えます。 仮説と方向性は? 現状の外部環境の変化を、改めて3C、SWOT、クロスSWOTを活用して戦略のメンテナンスを行いながら、試作販売時のバリューチェーン(サプライチェーン)を踏まえて、売価や原価の流れから現仮説の妥当性を確認し、方向修正を図っていきたいと思います。特に、関係部署と連携してこれらのフレームワークを活用することで、よりよい成果が期待できると感じました。

データ・アナリティクス入門

逆転の発想で切り拓く学び

どう仮説を組み立てる? 仮説を立てる際、3Cや4Pなどのフレームワークを活用することで、単なる直感に頼った場合に陥りがちな同じ発想の偏りを防ぐことができると学びました。フレームワークを用いることで、さまざまな角度から検討し、網羅的かつ説得力のある仮説を導き出すことが可能です。 逆の視点も意識する? また、仮説作成時には逆の視点から検証することが重要であると実感しました。反証のプロセスを取り入れることで仮説の信頼性が高まり、より客観的な判断ができると感じています。普段は「顧客の課題を定義し、その解決策を考える」というアプローチを実践していますが、解決策を検討する前に仮説を明確にすることの大切さを再認識しました。 今後の戦略をどうする? 今後は、解決策を検討する前に必ず仮説を立て、その検証を意識した取り組みを強化していきたいと考えています。「課題定義 → 仮説立案 → 解決策の検討 → 仮説の検証」というプロセスを意識することで、より論理的で根拠に基づいたアプローチが可能になると期待しています。 各部署で実践できる? 例えば、新たに導入した業務用Webアプリが期待通りに活用されていない場合、まずは「What(問題)」「Where(問題の所在)」「Why(原因)」「How(対策)」の流れで現状を分析し、各部署における利用状況や課題を明確にします。その上で、使っていない部署ごとにアプリのメリットを整理して伝えるとともに、各部署の業務にあった具体的な活用方法を提案することで、問題解決を目指します。

データ・アナリティクス入門

課題解決スキルが劇的に向上する方法とは?

実践による学びの深まり Week1から継続して学び続けた内容を、ライブ授業の演習を通じて「一気通貫」で実施することができ、実践に活用するイメージが具体化しました。特に、仮説は一度立てたら終わりではなく、段階ごとに検証を通じてブラッシュアップしていくこと、また分析は比較であることを強く感じました。さらに、課題解決のプロセスは「What→Where→Why→How」という順序で考えることが重要であると学びました。このプロセスを進める中で、「データのビジュアル化」や「多様な切り口を考えること」の大切さも再認識しました。 課題解決の新たな視点とは? 自分の仕事は基本的に社内の「課題」を解決することが主な業務であり、この講座で学んだ内容はあらゆる場面で活用できると確信しました。これからは、課題解決のプロセス「What→Where→Why→How」を常に意識したいと思います。問題を解決する際には、直ちにデータ分析に取り掛かるのではなく、まず問題の定義から始め、問題点を特定して原因を分析するというプロセスを「事前」に頭の中で描くことが重要です。それにより、無駄な作業やヌケモレを防ぎ、「How」を忘れずに取り組むことが可能です。 事前準備の重要性について 具体的には、すぐに「データ分析」に取り掛からないことを意識的に行い、事前にそれぞれの課題解決プロセスで必要な「タスク」をイメージし、タイムラインを引いて計画を立てることが大切です。最初はしっかりと言語化し、プランをドキュメントに起こしておくことを心がけます。

データ・アナリティクス入門

課題解決のためのアプローチ学びました

どの要素に焦点を当てるべきか? 問題解決のためには、What、Where、Why、Howの各要素に分けて進めるアプローチが重要だと学びました。単に数字を眺めるだけでは見えにくい情報も、プロセスごとに分けて考え、それを定量化 (例えば、ファネル分析やコンバージョン率) することで新たな課題が明らかになります。 仮説立案のコツとは? また、問題の原因を探る際には仮説を立てることが鍵です。その際の思考範囲を広げるために、対となる概念である「対概念」が有効であることも学びました。分析を進める上では、条件を揃えることが重要で、いわゆるApple to AppleとするためにA/Bテストを行い、比較対象の違いを絞り込むことが必要です。原因を探る際には、多くの項目に手を広げず、仮説を絞り込んで十分に研ぎ澄ますことが求められます。 システム導入の目的をどう明確にする? これからシステムを導入するにあたり、まずシステムが何のために必要かを明確にし、その問いを検討段階から関係各所と共有しながら進めることが大切です。そして、現状における問題の特定を行い、What、Where、Why、Howの各要素に分けて進めていきます。 比較分析のためには? システムの導入においては、何を比較するのかを明確にし、例えば導入した場合と導入しなかった場合の比較や、複数社での比較を行います。また、現状とあるべき姿のギャップを定量的・定性的に描き出し、比較することが重要です。場合によっては仮説を立てて進めることも効果的です。

クリティカルシンキング入門

直感を疑う問いのすすめ

どうして説明責任を重視? これまで直感や経験に頼って仕事を進めてきたことを改めて実感しました。しかし、どんな状況でも客観的に課題を見つけ出し、自分の言葉で相手に伝える―つまり説明責任を果たす―状態になりたいと強く感じています。そのためには「問いは何か」を意識し、適切な問いを自ら立てられるようになることが重要です。 顧客視点は伝わってる? 顧客に対する提案では、顧客が本当に得たいものや解決したい問題を明確にし、その立場に立った問いから物事を組み立てる必要があります。また、社内では上司や他部門と協力しながら、目標作成や調整を行い、自組織に有利な環境を整えることが求められます。さらに、組織内のメンバーとの関係を大切にし、共に課題を共有しながら進めることで、納得感のある目標や施策を実現することを目指します。 なぜ問いを立て直すの? 仕事に取り組む際は、まず自分の主観や直感に頼る前に「問いは何か?」と一度立ち止まり、状況を冷静に見つめる時間を持つことが大切です。そして、顧客の現状や向かっている方向性、顧客視点の問いを理解するため、情報収集、可視化、仮説の立案を行いながら、売り込みではなく対話を通じて議論していきます。加えて、数字に基づく分析を丁寧に行い、図表などを用いて分かりやすく説明することや、問いを共有する時間を意識的に取ることも重要です。 どうやって信頼を深める? 最後に、メンバーとのコミュニケーションの時間を積極的に確保し、組織全体で前向きに進むことを心がけたいと思います。

データ・アナリティクス入門

ロジックツリーで紡ぐ成長の軌跡

原因特定で悩む? 問題解決のためには、「WHAT」「WHERE」「WHY」「HOW」の4つのステップで整理すると良いと感じました。私は特に「WHERE」の段階、つまり「原因の特定」に偏りがあったように感じますが、今後は「状況把握」や「解決策」に関しても仮説を立て、ロジックツリーを使って可視化するようにしたいと思います。一度有効だと考えた仮説に固執せず、全体を整理し直す柔軟な姿勢を大切にしていきたいです。 人事課題に挑む? 人事課題では、正解がない問題が多く、一般論や他社の傾向と自社の実情が必ずしも一致しない場合があります。そんな中で自分が立てた仮説やその結論を明確にするため、ロジックツリーを作成しながら取り組んでいくことが重要だと感じました。また、これまで属性ごとに人事データを層別分解してきたものの、変数ごとの解釈が不足していたため、状況に応じてさまざまな角度から仮説の検証を行えるように努めたいと思います。 本当の問題は? まずは、目の前のデータに頼るのではなく、何が本当の問題なのかを明確にするための仮説を立て、その仮説をロジックツリーのような形で整理していきます。現状のデータだけでなく、どんなデータがあればより適切な比較ができるかを考え、必要であればデータを収集できる体制を整えることにも注力していきたいです。 検証の進め方は? 最後に、実際にデータを使って仮説を検証する際には、ログを残すことや、時間や状況の違いを比較することを意識しながら、着実に分析を進めていく所存です。

クリティカルシンキング入門

分解から見出す成長のヒント

分解の切り口は? 先週までの学びで、分解することの重要性については理解が深まりましたが、どのような切り口で分解すれば良いのか疑問にも感じていました。今週の学習で、分解の際に使える代表的な切り口について理解できたことは大きな収穫です。 どの手法を試す? まず、層別分解では、全体を定義した上で「~である/~でない」や年齢、性別、地域などの基準で部分集合に分類します。次に、変数分解では、売上を「単価×販売数量」、利益率を「利益÷売上」といったように、ある事象を構成する変数で分解して考えます。そして、ある事象に至るプロセスごとに分け、その中でいずれの段階に問題があるのかを明確にする方法もあります。 ユーザー離脱の理由は? 現在、会社の採用サイトではユーザーの離脱が多く、目的のエントリーに至らないという課題があります。そこで、ユーザーがどの段階で離脱しているのかを把握し、改善策を検討するために、プロセスの分解を用いてユーザー行動を細分化し、どのフェーズにボトルネックが発生しているか、また何が離脱の原因となっているのかを明らかにしようと考えています。 どの改善策が効果的? 具体的には、ゴールデンウィーク明けに課題に取り組む予定です。まずはプロセスを分解し、各段階で確認できる数字を抽出します。数字に極端な変動がある部分を特定し、そこから仮説を立て、問題の洗い出しを行います。私は、頭を整理するために紙やノートに図を書きながら進める方が分かりやすいため、その方法で取り組むつもりです。

データ・アナリティクス入門

仮説の問いで開く成長の扉

仮説をどう言語化する? データを見る前に「こうなりそう」と感じるのは、すでに仮説を持っている証拠だと感じます。経験や直感から「この傾向があるかも」と思うことが、後に重要な指標を絞り込むための手がかりとなります。そのため、仮説をしっかりと言語化し明示することはとても大切です。 仮説検証の効果は? 仮説が明確であれば、どの指標に重点的に注目すべきかが分かり、仮説が外れた場合でも「なぜ違ったのか?」という質問が自然に浮かび、スムーズに分析の焦点を絞ることができます。こうした仮説検証のサイクルを回すことこそが、データ分析の醍醐味であり、成果につながると考えています。 設備トラブルの影響は? 実際、稼働分析を日常的に行う中で、「おそらく設備トラブルの影響で停止が増えたのではないか」という仮説を立て、その検証に利用するデータを慎重に選定しながら、表面的な課題ではなく本質的な改善ポイントにたどり着こうとしています。 なぜをどう掘り下げる? また、分析業務において「なぜ?」と問いを繰り返すことを意識しているものの、これまで1~2回の掘り下げで思考を止め、表面的な原因に留まってしまうことが多かったと自覚しています。しかし、データ分析は正解のない問いに対して行うものであり、仮説や着眼点の精度が成果を大きく左右します。そのため、日常業務や分析の過程で「なぜを5回」繰り返すことを意識し、仮説が外れたときもすぐに切り替えず、なぜ違ったのかを徹底的に深掘りすることが重要だと感じています。

「課題 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right