クリティカルシンキング入門

問いを持続し成果へ導く道のり

問いの大切さは? 「問いから始める」という考え方が非常に印象に残りました。問いが何なのかを常に意識し、具体的な問いにまで落とし込むことが重要だと感じました。また、「問いを残す」ということは、問いを持ち続けることや自分が何を考えているのかを絶えず問いかけることであり、それにより、立てた問いが正しいのか、その問いに答えることで目標が達成できるのかを確認し続けたいと思います。さらに、問いを立てた後は「問いを共有する」ことが不可欠です。組織全体で方向性を共有しなければ、自分が解決しようとしている問題に取り組むことは困難になるため、問いの共有を常に心がけたいです。 工場問題の原因は? 現在、私たちの会社は世界各国に5つの工場を持っており、お客様が希望するタイミングでの供給が困難になるケースが頻繁に発生しています。この問題の原因を詳しく分析する必要があります。考えられる切り口としては、工場のオペレーションに課題があるのか、あるいはシステムの受発注の仕組みに問題があるのかなどが考えられます。この分析を通じて、現状の問題点を明確にし、対策を検討していきたいと思います。 目標達成の方法は? そのために目指すべきゴールと具体的方法、そしてその手段を実行することによって得られる価値についてしっかりと考えたいと考えています。検討した結果に基づいて資料を作成し、仮説を証明するための理由については、視覚的に分かりやすく示すように工夫したいです。この目的を達成するために必要なデータは何か、どのように分析すべきかを考慮しながら、自分の考えや実施したい施策について毎週の部内会議でチームメンバーと共有していきます。

データ・アナリティクス入門

小さな仮説、大きな成長

なぜ仮説が必要? 仮説は非常に重要です。急いだり怠ったりして、仮説を立てずにいきなり方法論に入ると、結果として時間が余計にかかるか、誤った方向へ進んでしまう可能性があります。 どう検証すべき? また、仮説はあくまで仮の答えであり、その検証が必要です。検証のためには目的意識を持ったデータ分析が不可欠です。そのため、たとえ「答え」となりうるものであっても、複数の仮説を立てることが求められます。さらに、3Cや4Pなど異なる切り口を用いることで、問題全体を網羅的に捉えることが可能となります。 疑いは成長の鍵? 加えて、仮説の立証を目的としたデータ収集や分析においては、自身の仮説が誤っているのではないかという視点を忘れずに実践することが重要です。こうすることで、自分に都合の良いデータだけを集めてしまうことを避けられます。 原因はどう見極め? 実店舗の売上やPLに関する業務では、好調な店舗と不調な店舗が存在します。いずれの場合も、その原因を正確に特定し、好調なら通例に従い、不調なら改善策を講じることが必要です。これまで、まず膨大な時間をかけてデータを収集していたところを、仮説思考を取り入れることで、何が問題なのかを先に明確にし、仮説を立てることから対応するようになりました。 何を意識すべき? また、目につきやすい場所に仮説思考に関するポイントやステップを掲示し、常に意識できる環境を整えることも有効です。正解や不正解を問わず、失敗を恐れずに実践していくこと、日常的に課題意識や疑問を持つこと、そして先輩たちの実践事例や経験から学ぶことが、さらなる成長につながります。

データ・アナリティクス入門

データの先にある学びの秘密

講義内容はどう感じた? ライブ講義を拝聴しながら、ポイントを迅速に判断し整理する力がまだ十分でないと感じました。どのデータセットを扱う際にも、何を明らかにしたいのかという目的意識をしっかり持ち、ロジカルシンキングや仮説立案のスピードを高める必要があると痛感しました。大量のデータを扱う中で、解決策の発見に注力するあまり、次第に目的から逸れてしまうことが実務上でも生じるため、その兆候を早期に掴むことが重要であると改めて認識しました。 営業戦略はどんな課題? 営業データを活用した営業戦略の立案においては、成約率向上という課題に対して、これまでの商談データを基に再検証を行う必要があります。過去にはあまり意識されなかったデータの粒度の粗さや、文章化およびビジュアル化の不足が、組織全体の納得感に影響していたと感じます。具体的には、なぜ成約率が低いのか、セグメントごとや担当者ごと、そして営業ステップごとの課題を明確にし、それぞれの原因を検証した上で、効果的な解決策を導き出したいと考えています。 UX改善は何が必要? サービス利用データを活用したUX向上施策の立案では、SaaSサービスのアクセスログをもとに、どの機能が利用され、どの機能が利用されていないかを明確に分類することが求められます。使われていない機能については、導入時からの利用状況や徐々に利用が減少しているのかなど、その背景を整理しながら原因分析を行います。さらに、仮説を立てた上で改善策を検討し、場合によっては機能の廃止も含めた対応を実施するために、顧客へのインタビューなども通じて検証を進めていきたいと考えています。

クリティカルシンキング入門

問いが拓く成長の扉

どう問いを意識する? 仕事を進める上で、まず常に「問い」を意識することの大切さを再認識しました。今回学んだ「問い」とは、「今ここで考えるべき問い」のことであり、クリティカルシンキングにおいてイシューと呼ばれる考え方に通じています。現状把握で得た事実から課題を的確に捉えるためには、まず問いを立て、イシューを明確にすることが重要です。さらに、問いを忘れずに一貫して意識し、共有しながら進めることが効果的な議論の土台となります。 仮説は何故大切? 演習では、課題をうまく捉えるために、さまざまな視点で事実を分解し、仮説を立てる手法の重要性を学びました。仮説を踏まえた上で問いを設定することで、具体的で実効性のある施策が立てやすくなります。ただし、業務の課題は複数の要因が絡んでいるため、一つの事例に対して複数のイシューが特定される場合が多い点も注意が必要です。 学びはどこで生かす? これらの学びは、個人だけでなく、プロジェクトや小集団での改善活動など、さまざまなシーンで活かすことができます。日常生活の中で、歯を磨くやごはんを食べるのと同じように、自然に「問い」を立てる習慣を身につけたいと感じました。 どう実践する? 実践のポイントとしては、まず課題に取り組む際に必ず問いを立てること、そしてその問いから逸れないよう意識することです。メンバーと共に課題に取り組む場合は、何の議論をしているのか見失わないよう、随時問いを確認していくことが求められます。また、問いをすぐに立てるのが難しい場合には、現状把握をより深め、仮説構築を精緻にしていくことで、問いの質を高める努力が必要です。

クリティカルシンキング入門

問いに挑む毎日の成長

今の問いは何だろう? イシューとは、今ここで答えを出すべき問いのことです。イシュー設定の際には、「問いの形にする」「具体的に考える」「一貫して抑え続ける」という3つのポイントを意識する必要があります。まずは、問いが何であるかをはっきりさせることが大切です。 全体で課題を共有する? 次に、その問いを常に意識し続けることで、解決すべき課題が見失われないようにします。そして、組織全体でこの問いを共有することで、皆が同じ方向性に向かって課題解決に取り組むことが可能となります。適切なイシュー設定は課題解決の成功に直結するといえるでしょう。 手法で問題を割り出す? また、これまで学んできたロジックツリーやプロセス分解の手法を活用することで、イシューを導き出す方法もあります。例えば、売上構成をロジックツリーで細かく分析し、問題を特定の要素(例えば、客数の少なさ)に収束させるといったやり方が考えられます。 ユーザー心理は理解済? さらに、自社サービスのウェブサイトに訪れたユーザーがどのような課題を感じ、最終的にどのような体験をしているのかについて、ユーザビリティテストを行わずとも自らイシューを見極めることが可能です。ユーザー行動に注目し、どの画面で何がわかりにくいのか、どのような心理を引き起こしているのかを把握することが重要です。 仮説検証の流れは? 具体的な取り組みの手順としては、まずチームで最も解決すべき問題(イシュー)を特定し、そのイシューに基づいてデータを精査します。その後、仮説検証を繰り返すことで、実際の課題や障壁を明確にしていく流れが効果的です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

戦略思考入門

振り返りで築く未来戦略

どうして多角的な見直し? 仕事において、毎回全てを実施できるわけではありませんが、多角的に物事を見直す「ここぞ」というタイミングを見極めることは重要です。スポーツのビデオレビューのように、過去の自分の行動を整理し、継続するための指針としてまとめることが効果的だと感じました。また、状況に応じて敢えて一つに絞る戦略も大切であると学びました。 定量分析の習得は? 一方で、理系的な定量分析による仮説ベースの戦略思考は、習得に時間を要する課題であると理解しました。指導を受けながらも地道に実践していくことで、徐々に身につけられるという点に納得しています。 キャリア設計はどうする? これからは、3年間の出向が終わる9月以降に自身が取り組む業務を提案する際の題材として、本学での学びを活かしていきたいと考えています。自動車業界は電動化、自動化、DX化などの急激な環境変化に直面しており、その中で「何をやり、何をやらないか」をはっきりさせるために、将来のキャリアプランを見据えた目標設定が欠かせません。 戦略確立の秘訣は? そのために、以下の点に取り組む予定です。まず、自分の将来ビジョンを明確にし、具体的な目標を設定します。次に、現在の課題や管理職のニーズ、組織リソースなどをしっかり情報収集・分析し、全体の整合性を取っていきます。また、自分が行う業務について専門性やスキル、市場環境の観点から差別化を図り、想いや将来性といった軸を定めた上で選択を行います。最後に、その取り組みが本質やメカニズムに合致しているかどうかを整理し、戦略の確立を目指したいと考えています。

データ・アナリティクス入門

仮説で見える新たな可能性

仮説の意義って何? この教材では、仮説の基本的な意義とその分類について学びました。結論の仮説と、問題解決の仮説に分かれており、特に後者は「What?→Where?→Why?→How?」というプロセスで問題にアプローチする点が印象的でした。 検証マインドは必要? また、検証マインドの重要性や、説得力の向上、関心・問題意識の向上、スピードアップ、そして行動の精度向上といった効果も理解でき、実務における検証のプロセスがいかに大切かを再認識することができました。 SNSで成果は出る? 実際のSNSキャンペーンでの活用例として、たとえば「ソーシャルメディアAが最も広告費対効果に優れているのでは?」という仮説を立てる方法が紹介されていました。過去の広告データを徹底的に分析し、どのプラットフォームが最もコスト効率が良いかを比較。その後、小規模なA/Bテストを実施して実際のパフォーマンスを検証し、最も成果が出たプラットフォームに予算を集中させるという具体的な手順です。 フレームワークは有効? さらに、仮説のフレームワークを実業務に当てはめるための補助ツールとして、4P(Product, Price, Place, Promotion)や3C(Company, Customer, Competitor)、そして問題の本質に迫るための5Why(なぜ?を5回繰り返す)といった手法が紹介され、実践的な視点が取り入れられていました。これらのフレームワークは、課題の分析や市場での自社のポジションの確認、そして問題の根本原因の探求に大いに役立つと感じました。

戦略思考入門

フレームワーク活用の楽しさと難しさ発見

フレームワークってどう活かす? これまでの学習を通じてフレームワークの内容は理解したつもりでしたが、それを実践に移す難しさを感じました。総合演習では与えられた状況を分析する際、どのようにフレームワークを活用すれば良いのかを整理するのに時間がかかりました。こうした経験から、まずはフレームワークに落とし込んで見える化することの重要性を実感しました。また、「仮説設定と仮説検証」を繰り返して考えることの重要性にも気づきました。物事を分析し、ある結論に導くためには多くの情報の中から必要な情報を選び出し、仮説として組み立てる必要があります。そのためには、大胆に考えた後、仮説検証を十分に行うことが求められると感じました。 教育企画はどう進める? 現在担当している教育体系の企画業務においては、無暗に研修手段の情報を収集して選定するのではなく、自社の環境や課題をまず分析し、必要な施策を検討することの重要性を感じています。また、教育関連の企画においては仮説設定に重きを置く傾向があるため、実施の前に事業本部にヒアリングを行うなどして、仮説検証を十分に行う必要があると考えています。 分析で信頼を築ける? 自社分析や外部環境分析の際、SWOT分析やPEST分析といったフレームワークを活用することで、上司や他の人々にも納得しやすい提案ができると感じました。今後もフレームワークの活用を実践していきたいと考えていますが、フレームワークを使うこと自体が目的にならないよう注意し、企画の根本的な目的を忘れず、無理にきれいにまとめようとしないことも心がけたいと思います。

マーケティング入門

プロダクト思考から脱却するマーケ戦略

視点の違いに気づく? マーケティングの基本的な視点を学びました。顧客のニーズを起点に考えることは当然のことですが、今回のワークを通じて、自分がプロダクト思考に傾いていることに気づかされました。今後は、自分のマーケティング思考を「市場環境や顧客の状況、強み、弱みを深く理解し、仮説を立てて検証し、最適な製品・サービスを提供すること」と定義していきます。グループワークでヒット商品についてディスカッションした際、各人が置かれている立場によってヒット商品の捉え方が異なることを感じました。自身の視点にとらわれず、最適なマーケティングができるように心がけたいと思います。 計画はどう組む? 私の仕事は、IT製品・サービスを提供する会社で販売計画を作成し実行することです。現状、プロダクト思考が強く顧客ニーズを起点とした考え方が不足していると感じています。本部からの施策をそのまま実行しがちですが、担当する地域の市場環境や顧客のニーズを捉えた上で計画を立てていけるようにしたいです。そのためには、日々情報を収集する習慣や、市場環境やニーズを調査するスキルが必要だと感じました。 顧客の声はどう? 重点顧客については、自分なりの視点で3CやSWOT分析を行い、経営に関連する課題やニーズをヒアリングして顧客ニーズを把握する活動を実施します。また、新聞やシンクタンクの情報を活用して、担当地域の特徴やニーズを理解し、仮説思考の精度を向上させるよう努めます。これらをもとに、現在進行中の販売計画をブラッシュアップし、マーケティング思考に基づく計画に改善していきます。

データ・アナリティクス入門

問題解決力を育むプロセスの魅力

原因の見極めは? 問題を解決する方法の一つとして、プロセスを分解して原因を明らかにするアプローチがあります。また、解決策を検討する際には、複数の選択肢を洗い出し、根拠に基づいて選定することが大切です。この際には、判断基準の重要度に基づき重み付けを行い、解決策を評価して選択します。 データで何が分かる? データを分析しながら問題解決の精度を高めるためには、ステップを踏んで行う方法や仮説を試してデータを収集し、改善につなげる方法があります。これらのアプローチを組み合わせることで、データ分析をより高度に行うことが可能です。 業務の見直しは? 現在、マーケティング関連の業務をしていなくても、特定の目標を達成するために、行動や業務フローを時系列や工程ごとに分解し、問題点やボトルネックを洗い出すことができます。これらの問題が実際にボトルネックとなっているかは、日々の業務を通じて確認、検証、改善を重ねることが必要です。このプロセスを通じて、実際に成果に結びつく行動を特定することが重要です。データ分析が可能となるよう、数値化された目標や行動(KPI)が設定されていることが重要な前提です。 残業改善のヒントは? 例えば、チームが抱える課題として残業時間の多さがあるとします。この場合、目標を「各スタッフの残業時間を月10時間以内に抑える」と設定し、各スタッフの業務工程を洗い出し、それぞれの業務にどれくらいの時間がかかっているかを分析します。そこから、効率化またはアウトソーシング可能な箇所を特定し、実際に実践することが望ましいです。

データ・アナリティクス入門

仮説思考で広がる研修の未来

仮説の意味とは? 仮説とは、問題解決や意思決定の基盤となる論点に対する仮の答えであると再認識しました。学習を通じて、仮説には「結論に対する仮説」と「問題解決の仮説」の2種類があることを理解し、特に後者では「Where:問題の所在」「Why:原因」「How:解決策」という3つの視点が重要であると学びました。また、仮説を立てる際には網羅性を意識し、3C(顧客・競合・自社)や4P(製品・価格・流通・プロモーション)などのフレームワークを活用することで、抜け漏れを防ぎ、実行可能な仮説を構築できる点が非常に有用だと感じました。 学びをどう生かす? 今回の学びは、特に新たな研修企画の立案において活かせると考えています。たとえば、受講者が抱える課題や、その解決に向けた最適な研修プログラムを検討する際、これまでの既存の枠組みを超え、より広い視点で仮説を立てることが求められます。3Cを用いて受講者のニーズや組織の目標、そして競合の研修内容を分析することで、より具体的で効果的なカリキュラム設計が可能になるのではないかと思います。 次の研修はどうする? 今後の研修企画では、まず研修の目的と受講者が抱える課題を明確にし、初期段階から3Cや4Pなどのフレームワークを活用して網羅的な仮説設定を行います。また、企画の途中で目的から逸れていないか、あるいは目的自体に誤りがないかを定期的に再検証するプロセスを取り入れる予定です。さらに、既存の研修内容につきましても、この手法を用いて見直しを行い、より精度の高い研修企画の実現に努めたいと考えています。

「課題 × 仮説」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right