マーケティング入門

戦略で勝つ!実践マーケの秘訣

商品の価値はどう見る? 新商品の導入にあたっては、その商品の価値自体に加え、利用する状況や場面に潜むニーズも合わせて検討が必要です。イノベーションの普及要件として考えるべき5つのフレームワークの中で、特に可視性や比較優位性がどのように発揮されるかが大きなポイントとなります。 マーケティングとは何? また、セグメンテーションとターゲティングの観点からは、従来の3Cの知識に加え、経営資源の効率的な活用も求められます。マーケティングの基本は、顧客のニーズを正確に把握することであると再認識させられました。 SNS投稿は見直す? この学びを活かし、SNSでの投稿内容の見直しに取り組むことが重要です。可視性と比較優位性を意識した文言の選択やフィードの作成を行い、訴求力の高いコンテンツへとブラッシュアップする必要があります。 ターゲットはどう決める? 更に、ターゲットの絞り込みについては、年齢や地域、性別、思考性だけでなく、ユーザーの状況や環境といった面も考慮し、3種類ほどのペルソナに分類するなど、より具体的なターゲット設定を目指します。 施策で何が変わる? これらの施策が、新商品の魅力を正しく伝え、顧客の興味を引くマーケティング活動へとつながると考えています。

アカウンティング入門

店舗と資産を見直して新たな発見

簿記学習のポイントを振り返る 今回の内容は、以前から簿記で学習していたことと重なっていたため、理解するのは比較的容易でした。固定負債と流動負債の違いを理解するのには最初苦労しましたが、学んでおいて良かったと思います。また、1年以上の負債でも通常の営業サイクルに含まれるのであれば流動負債とするという例外ケースは見分けるのが難しいかもしれません。ただし、今のところはそのようなケースにはまだ出会ったことがありません。 自店舗の資産を深く考えてみる 自分の店舗の資産と負債について考えてみました。これまで店舗の資産について深く考えたことがなかったので、良い機会になりました。私の店舗は賃借であり、大部分のPCやシステムもリースや利用料を払って使用しています。顧客データや人材などのソフトな部分は資産と言えますが、基本的にはBSには表記しません。具体的に考えると、資産の特定は難しいものです。 おおよそのBSを作成してみる 次に、自店舗のBSをざっくり作ってみました。正確なものではなく、おおよその仮定で考えられる項目に置き換えてみました。さらに、自社全店舗を合わせたものが会社全体のおおよそのBSになると考えると、若干大雑把な数字になりますが、それでも考えてみる価値はあると思います。

データ・アナリティクス入門

データ分析で社会課題を解決する心得を学ぶ旅

分析の本質を学ぶ意義とは? 講義開始直後から、分析の本質について明確に示されるので、動画の解説が頭にスラスラと入りました。まず、分析の本質は「比較」であり、適切な対象を比較することが重要です。迷ったときは、分析の目的に立ち返ることが大切で、その際にはデータに偏りがないかどうか、「生存者バイアス」に注意することが求められます。このように、6週間の講座を通じて、最も重要な「心得」を学ぶことができました。 仮説設定の流れをどう進める? 私は、社会課題に対する「仮説」をもとに、行政などのオープンデータを分析し、数字的な事実を裏付ける仕事をしています。今回は、体系的にデータアナリティクスを学ぶことで、仮説設定や分析対象の選定をスムーズに行いたいと思いました。 データ分析の実践ステップとは? 具体的には、以下のアクションを実行しようと考えています: - データ分析について、チーム内に基礎的な知識を共有する。 - チームメンバーが取り組んでいる社会課題に関連するオープンデータを収集する。 - 仮説を洗い出し、それを裏付けるための数字を設定する。 - 適切な比較対象をピックアップする。 このような手順を通じて、社会課題の解決に向けた効果的なデータ分析を進めていきたいと思います。

データ・アナリティクス入門

数字の背後に輝く発見

統計でどう比較する? 分析は、単なる数値の羅列からその違いを見出すだけではなく、統計的な手法を用いて比較することが大切です。たとえば、平均は代表的な統計手法ですが、平均値だけではデータの全体像を正確に把握できない場合があります。そこで、最大値、最小値、中央値、最頻値などの複数の指標を合わせて用いることで、より明確な違いが見えてきます。また、数値だけでは分かりにくい部分はグラフなどのビジュアルツールを活用することで、視覚的に比較しやすくなります。 仮説は信頼できる? 現状のデータ分析では、まず仮説を立て、その仮説に基づいた統計的手法やグラフを用いて分かりやすい資料作成に努めています。しかし、仮説が常に正しいとは限らないため、偏ることなく中立的な立場でデータを検証し、仮説に反する結果があれば素直に認めて正確に分析することが求められます。 方法はどう変える? また、現行の分析手法や視点を根本から見直すことで、データの収集方法や指標の選定、解釈の仕方まで再検討し、実態に即した新たな気づきを得ることが重要です。その上で、得られた新たな視点をもとに具体的な改善策や施策を立案し、現場での運用につなげることで、分析結果を実効的に活用するサイクルを確立していきたいと考えています。

アカウンティング入門

数字と戦略の不思議な関係

利益創出の秘訣は? P/Lは企業がどのようにして利益を生み出しているかを示すもので、売上総利益、営業利益、経常利益、当期純利益の前年比や各項目の構成比を通じ、企業が提供する価値がどのように反映されているかを読み取ることができます。当期純利益はB/S上で利益剰余金として純資産に加算され、両者は連動しています。 B/Sの仕組みは? 一方、B/S(バランスシート)は資産、負債、純資産の三要素がバランスを保っており、特に下部に位置する項目は固定的なお金として扱われます。同じ業態であっても、企業が本質的に提供する価値が異なれば、P/LもB/Sもそれぞれ特有の構成となります。 決算資料は何を見る? 具体的な決算資料、例えば第2四半期の資料をしっかりと読み込み、企業が今後目指す数値や成長戦略を確認することが重要です。また、同業他社とのP/LやB/Sの比較を行い、違いを明確にした上で、意見交換会などの場でそれぞれの工夫点をヒアリングすると良いでしょう。 連結決算の検証は? さらに、連結決算やIFRSの知識を深めること、また、数年後の目標の妥当性を具体的に検証し、どの項目でどの程度の増減が求められるか把握することが、株主をはじめとする社外の期待に応えるためには不可欠です。

デザイン思考入門

共感から始めるデザイン思考の魅力

人間中心の考え方とは? WEEK1のライブ授業で特に印象に残った点として、共感から始まる人間中心の考え方がありました。また、「万人受けするものは売れない」という教訓から、常に「誰のために作るのか」を念頭に置くことの重要さを学びました。さらに、相手の気持ちなど目に見えない部分まで含めて考える必要があることが強調されていました。そして、自分の感情を色で表現し、それを伝えることの難しさも実感しました。 デザイン思考に潜む魅力 デザイン思考において、優しさや愛情がその根底にあるのではないかと感じ、より興味が湧いてきました。普段、私はtoCの業務に携わっており、満足度や継続利用率の向上に向けたコミュニケーションを行っています。これまではなるべく全員が満足できるものを提供しようと考えていましたが、今後は誰に届けたいのかを意識していきたいと思います。 3月のイベントに向けた準備 3月のイベント開催に向けては、次のステップを考えています。前回の参加者データを確認し、目的に合ったターゲットの再設定を行います。また、データの整理やその理由付けを行い、社内で相談の上最終決定をします。そして、訴求内容を変更し(サムネイルや文言の調整)、開催後には前回との比較や効果検証を行う予定です。

データ・アナリティクス入門

データ分析の基本を理解し深堀り

分析の基本を理解しよう 分析は比較であるという基本を理解することが重要です。目的や仮説をもとに分析に取りかかること、そして問題解決のステップ(What-Where-Why-How)を意識することが求められます。仮説を立てる段階から、何と比較するかを考えながらデータを集め、それを加工・集計し、ビジュアル化することで発見につなげるという手順が大切なのです。 仮説立案の重要性 現在の業務では、多種多様なデータが提示されることが多く、闇雲に分析してしまうことがあります。ここで重要なのは、仮説をしっかり立てて分析に取り組む姿勢を忘れないことです。 データ収集から始めよう 今後の業務では、どのデータを集めるかという段階からスタートします。その際に、学んだことを振り返りながら全体の設計に取り組みたいと考えています。 フレームワークの活用法 今回の講座は自分にとって納得感のあるものでしたが、人に説明や指導するにはまだ至っていません。復習しつつ、意識して普段の業務に当たることで、講座で学んだ内容を自分のものにしていきたいです。特に、フレームワークについては知識としては以前から持っていましたが、きちんと使用したことがなかったため、今後は積極的に活用していきたいと思います。

アカウンティング入門

「会社の健康状態を見抜く方法を学んで」

B/Sの構成を理解するには? B/Sの構成がどうできているのか、得たお金の使い道などが理解できました。資産、負債、純資産が記載されており、「会社の健康状態」という言葉がすごくしっくりきました。「見方」として、流動資産、固定資産、流動負債、固定負債、純資産の5ブロックに分かれているバランスが重要で、私がB/Sから読み取りたい「相手方の経営状況」がここから読み取れると理解しました。細かい部分は理解しきれていない所も多く、次週の学習で理解を深める予定です。 リスクの程度をどう知る? WEBから入手できる情報でまずは負債の情報を見て、そのリスクの程度を知ろうと考えました。また、自社の情報を見て、他社との比較を行い違いがどこにあるのか、また自社のお金の使い道を把握することで、今後どうしていくべきかの仮説を立ててみようと考えました。 自社と他社の比較分析 具体的には、次のことを行いたいです。まず、WEBからの情報を入手し分析すること。そして、自社情報の分析も行います。リスクの程度を知り、自社と他社との相違点を見つけ、改善ポイントを見つけて改善案を考えることが重要です。最後に、この結果を経理部門と共有し、B/Sの読み方や考え方が間違えていないかを確認する機会を準備します。

アカウンティング入門

損益計算書で強化する経営力

損益計算書を理解するには? 損益計算書の各項目をしっかり理解することができました。まずは全体をざっくりと観察し、各項目の推移を確認することで事業が順調かどうかを判断できる点が分かりました。また、利益を上げるためには、提供する価値をどのように考えるか、つまりコアバリューをしっかりと描いてブレないことが重要であると強く感じました。コアバリューが揺らぐと、お客様が持つ価値観が崩れ、離れてしまう可能性があると感じました。 コアバリューをどう活用するか? 現在の製品におけるコアバリューとは何かを明確にし、それを意識した利益計画を立てたいと思います。新規開発や生産性向上の施策を講じる際には、生産性を向上させることでコストを下げるのか、無駄を省いて利益を上げるのか、その際に品質が保たれるのかを考えたいです。コアバリューを意識しながら意思決定を行うことができればと考えています。 自部門とどう比較する? 今回の講義では、損益計算書の見方や分析方法を学びました。まずは自部門の毎月の損益計算書と照らし合わせ、現状を把握し、本講義や書籍を参考に自分なりの見解を出してみたいと思います。そのうえで、分からない点があれば、経理や会計に詳しい方に質問してみようと考えています。

データ・アナリティクス入門

データが拓くビジネスの未来

分析の本質とは? 分析とは、物事を分け整理することと、比較対象や基準を設けて比較することの両面が本質だと感じました。また、データ分析の目的や、どの項目をどのような形であたりをつけるのかという入り口の考え方も学べ、基本的な考え方がしっかりと理解できたと実感しています. 将来の分析戦略は? 今後は、顧客IDを活用して、CRM、Web行動、イベント、購買実績の時系列統合基盤を構築する力を高めるとともに、ビジネスゴールを離脱点や購買シグナルなどの具体的な分析課題に落とし込むスキルを向上させたいです。また、転換率やLTVなどのKPIを定義し、ダッシュボード上でリアルタイムに可視化しながら、閾値やアラートを設計する能力も伸ばしていく必要性を感じました. 実行計画はどう? 具体的な行動計画としては、まずCRM/MAの構造とAPIについて学び、ダッシュボードの運用や自動連携が自在に行えるレベルまで習熟することを目指します。次に、顧客ID基盤を活用してデータの抽出と整形を行い、分析用CSVを定期的に生成できる仕組みを構築します。さらに、RやPythonを用いた回帰分析やクラスタリングなどの手法を実施し、得られた示唆を速やかに施策へと反映できるサイクルを確立する方針です.

データ・アナリティクス入門

比較で照らす課題と新発見

問題はどこに? 分析においては、比較の重要性を学びました。具体的には、問題箇所をプロセスごとに分解し、その中でどこが課題となっているのかを明確にする方法です。業務内容によっては、顧客数や単価、さらには年齢層や競合の視点なども考慮する必要があります。これまでは感覚的に分析していたため、今後はストーリー性を持たせた見通しの立て方が有効だと感じています。 利用動向はどう? たとえば、コロナ前後でサービス利用が減少しているという現状について、一人当たりの利用量が下がっているだけでなく、利用者全体の数や競合の動向も踏まえて比較検討することで、新たな発見が得られる可能性があります。各要素を分解して分析することで、より明確な課題の特定が進むと考えています。 データはどう整理? そのため、まずは現在あるデータをプロセスごとに整理し、「サービス料」と「サービス利用者数」の比較からアプローチを始めます。仮説としては、サービス料に何らかの課題が存在するはずなので、一人あたりのサービス料、最大値と最小値、中央値といった指標を調査し、問題がどこにあるのかを絞り込んでいきたいと思います。さらに、競合するサービスの状況も合わせて検証することで、より具体的な分析が可能になると考えています。

データ・アナリティクス入門

ここにあった!生存者バイアスの真実

弾痕が少ない理由は? 今回の研修で最も印象に残ったのは、戦闘機の補強に関する話でした。弾痕が多く残っている部分ではなく、むしろ弾痕が少ない部分を補強すべきという考え方に驚かされました。この事例は「生存者バイアス」と呼ばれ、帰還できなかった機体の状況を無視すると正しい判断ができないという重要な教訓を示していました。 比較対象の選び方は? また、分析の基本は「比較」というシンプルな考え方に基づいているものの、適切な比較対象を選ぶことや、見えにくいデータに注目することの難しさと大切さを改めて実感しました。 データ比較で改善策は? 私が担当しているシステム開発プロジェクトにおいては、テスト工程でのバグ検出率向上が課題です。そこで、研修で学んだ比較の考え方を活用し、成功事例と失敗事例のデータ、たとえばテスト時間やレビュー時間を比較することで、より効果的な改善策を見出していきたいと考えています。 比較難点をどう乗り越える? ただし、比較対象の条件が必ずしも揃っていないケースや、対照となる対象そのものが存在しない場合など、現実のデータ分析では困難な点もあります。こうした状況では、新しいデータの収集や、比較方法の検討をさらに深掘りしていく必要があると感じました。
AIコーチング導線バナー

「比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right