戦略思考入門

業務効率化のための捨てる勇気

戦略で捨てるのは? 戦略において、捨てることが重要な場合があります。そのポイントは以下の3つです。 利便性の真意は? 1つ目は、捨てることが顧客の利便性を向上させる場合があるということです。これは、自社のコア事業に全力を注ぎ、高い品質を追求することで実現します。頭では理解できても、実行するには勇気が必要な戦略とも言えます。 営業投資はどう見る? 営業に関しては、投資対効果が高いものから始めることが重要です。評価基準を数値化することで、判断がより明確になると感じました。 今の業務はどう? 現在の業務において、これらのポイントを振り返ってみました。 問い合わせ対応は? 1. 顧客の利便性を増すために捨てることについては、問い合わせ対応に多くの時間が割かれているため、これを既存の問い合わせ窓口に集約できないか検討しています。 委託業務は見直す? 2. 惰性に流されないためには、委託している業務の見直しが必要です。より専門性の高い業者に業務を任せるか、専門性が求められる部分を切り出して他の業者を検討することを考えます。 専門分野は任せる? 3. 専門的なことは専門家に任せるという考え方ですが、私はこの考えをかなり実践できていると思います。会社内でもこの考え方が浸透しており、自社内だけで問題を解決しようとしない姿勢が取られています。 改善策は何かな? 問い合わせ内容の分類を行い、既存窓口で対応可能なものについては問い合わせ先を変更することを考えています。また、業務委託内容を詳細に見直し、専門性が必要なものと一般的に行える作業を分類します。複数の派遣会社に求められるサービスの構築を相談し、見積を取得して現行の業務委託費用と比較可能な資料を作成します。

データ・アナリティクス入門

データ分析で未来を変える振り返り

分析の本質をどう理解する? 「分析は比較なり」という言葉に触れ、データ分析の本質を理解しました。特に分析の重要な要素を短く表現していると感じ、講座の印象に残っています。具体例では飛行機の比較がありましたが、欠損部分を答えと思ってしまいました。この講座を通じて、すぐに正しい結論を導けるよう、考え方を習得したいと思っています。 分析前の準備は何を意識する? 次に、分析前の「目的」と「仮説」が重要であることを学びました。これまでは仕事の中でしばしば「分析しておいて」と言われ、提案書の内容やグラフの色選びで迷うことが多くありました。これらの悩みの原因は、分析の目的や仮説の前提が欠けていたことに気づきました。この気づきにより、目の前の作業に集中するのではなく、前提意識を持って取り組むことで、提案書の質やクライアントへの説得力が大きく改善されると感じました。 理想の分析へどう向かう? 「言語化・教訓化・自分化」の実践においては、理想の姿を描く際に不足を感じ、反省しました。本講座を通じてこれを意識的に学び、活かしたいと思います。また、内部環境や外部環境のデータ分析でこれらの考えを活用できると感じました。 必要なデータはどう見つける? まず、データ収集の場面では、市場やクライアントの会社を分析時に、どのデータが必要か考えることができます。クライアントに提供するデータについて考える場面にも役立つでしょう。 提案書作成で重要なポイントは? 分析前に重要なのは、「目的」と「仮説」であり、提案書へ表現する際には、明確な目的に基づいて、適切なグラフや色の選択を行うことが大切です。また、分析を進める間にも都度結果を確認し、方針の変更がないかチェックすることで、目的に沿った貴重な分析を行いたいと考えました。

データ・アナリティクス入門

チーム力で見つける新しい発見と成長

6週間の振り返りと学び 6週間の総まとめをLive授業で振り返り、演習として実践することができました。時間は限られていましたが、ブレークアウトルームでのディスカッションが非常に有意義でした。他のグループの発表やチャット欄での投稿から、同じ題材でも切り口や発想が異なる点も興味深かったです。 アウトプットの重要性を実感 アウトプットの重要性と他の人を巻き込み、様々な視点で物事を考えることの重要性や効果を実感しました。データ分析は週次のチームミーティングでの前週の結果分析や当該週のアクションプラン策定に活用しています。本講座で学んだ考え方や進め方をチームメンバーにも浸透させるため、常にアウトプットを意識していきます。 分析と仮説構築の大切さ 特に以下の3点を大切にしていきます。 1. 分析とは比較すること 2. 仮説の引き出しの持ち方 3. 仮説構築に各種フレームワークを活用できること 新しいスタイルの効果は? アウトプットを通じて自分自身にも自然に身につけ(体得する)状況にまで持っていければと思います。 Q2に記載した場面での活用を考えていますが、その進め方には特に注意を払いたいです。最初に自分の分析結果を示してからメンバーの意見を聞くのではなく、前週の結果やトレンドを全員で確認し、その上でどのような仮説や原因が考えられるかをチームで検討します。そして、その上で自分の分析結果や仮説を共有することを意識して取り組みたいと思います。 得られる効果への期待 このスタイルにより、以下の効果が期待できます。 1. バイアスをある程度取り除ける 2. 自分自身が思いもつかなかった仮説を認識できる これまでのスタイルから変えていくことで、どのような結果が得られるのか楽しみです。

データ・アナリティクス入門

データで見える真実: 分析の新たな視点へ

重要な三つのポイントとは? 私が特に重要と感じた点について整理すると、次の三つが挙げられます。 まず、「分析は比較なり」という点です。物事を細分化して整理し、各要素の性質や構造をはっきりさせることが求められます。また、具体的な比較対象や基準を設けることで、状態を把握しやすくなり、意思決定もしやすくなります。 データ分析の目的確認はなぜ大事? 次に、「データ分析を始める前に目的の確認をすること」の重要性です。仮説を立てて取り組むことが強調され、目的と照らし合わせながら比較することで、目に見えない情報を想像しながらの分析が可能になります。 最後に、「Apple to Appleになっているか」の確認が重要です。不適切な比較対象を避け、意思決定に役立つ分析を行うよう心がけなければなりません。 グラフの可視化はどう変わる? また、グラフの可視化においても学びがありました。データの種類に応じた加工法やグラフの見せ方を学び、「どんなデータを」「どう加工するとわかりやすいか」をより意識する必要があります。これを企画ごとのデータ分析に役立て、反響率や成約率、属性やエリアなど、比較すべき視点が今まで以上にあることに気づかされました。 実践にどう活かすか? さらに、作成するグラフの可視化方法についても実践していきたいと感じました。分析の本質をチーム内で共有し、分析に取り組む前の目的の明確化を意識することが必要です。そのうえで、これまで出してきた分析指標が正しい比較だったのか、新しい視点はないかを見直し、より良い意思決定に役立つものにしていきたいと思います。 企画運営の課題を定量分析によって発見し、根拠のある提案ができるようにするために、まずは学びを実践していくことが大切だと感じました。

データ・アナリティクス入門

実践で分かる分析の極意

基本原則は理解できた? 今週は、ライブ授業を通して6週間の学習内容を実践演習で総まとめしました。初めに、1週目から学んだ基本原則に基づく比較分析や、データの種類に応じたグラフの加工・表現方法を改めて確認しました。また、データ分析を始める前に、目的や仮説の重要性についても再認識する機会となりました。 プロセスは理解できた? さらに、問題解決のプロセス(What・Where・Why・How)や分析のステップ(仮説構築・データ収集・データ分析・仮説検証)を実践する中で、やみくもな分析を避けることや、アウトプットのイメージを持ってデータ収集を行う大切さを痛感しました。 キャンペーン分析は進んでる? 私の業務では、電子マネー決済によるキャンペーンの分析を行っており、決済データをもとに利用者の定性情報や行動パターンを把握することで、決済回数や決済金額の増加に向けた施策の提案や効果検証を進めたいと考えています。 目的は明確になった? 現状の課題は、データ分析の目的や分析する内容が関係者の間で曖昧になっている点です。そこで、まずは分析の目的や問いを明確にし、何を分析するのかを関係者間でしっかりと共有・可視化する必要があります。目的や分析対象が定まれば、データ収集を実施し、その結果をもとに仮説構築を進めます。仮説構築の際も、重点的に検討すべき点を明確化し、関係者と共有していくことが重要です。 施策は具体的になった? また、現状分析では、各種フレームワークを活用しながら、問題点やその原因、そして打ち出す施策を具体的に明確にすることが求められます。最後に、データ収集および仮説検証の結果は、関係者にわかりやすく説得力のある形で伝えられるよう、適切なグラフを選んで可視化し、報告していく予定です。

データ・アナリティクス入門

分析で見える明日のカタチ

分析の目的は何? 分析とは、物事を具体的に明確化し、より良い意思決定へ結びつけるための手法です。より良い意思決定を行うには、まず目的をはっきりと定め、その達成に向けた具体的な比較対象や評価基準を設けることが重要です。 比較の意図は? 目的に沿った比較対象を設定することで、分析結果の見せ方にもメリハリが生まれ、伝えたい意図を明確に示すことができます。データの比較やグラフの工夫により、情報を読みやすく、効果的に伝えることが可能となります。 事例の意味は? たとえば、人事部門におけるデータ活用事例としては、以下のような取り組みが考えられます。制度導入効果の検証では、退職率や従業員満足度を過去の実績と比較し、制度の効果を測ります。入職・退職の動向把握では、社内や業界全体のトレンドを把握することが重要です。また、配置や異動の最適化、研修やスキル管理、エンゲージメントの可視化といった分野でも、データを基にした分析が行われています。 退職率の分析は? 具体的に退職率の分析に取り組む場合、まず上司との認識を合わせ、分析の目的を明確にすることが必要です。目的としては、人材の流出抑制や制度改革の効果検証、さらには業界・社内の現状把握などが挙げられます。 比較基準はどこ? 次に、自社内の過去の実績や、制度変更前後のデータ、同業界・同地域・同規模における最新のトレンド、さらには年齢や勤続年数といった属性別の変動など、具体的な基準を設定して比較を行います。 伝達方法は? さらに、複数のグラフや推移グラフ、色付けやサイズ変更などを用いて、分析結果の意図をより明確に伝えることが求められます。このような取り組みを通して、目的に沿った分析を進めることが、より良い意思決定へとつながっていきます。

アカウンティング入門

企業の健康診断を学ぶ経営分析講座

P/LとB/Sの違いは? P/Lは売上と利益を把握するためのものである一方、B/Sは会社の状態を把握するものだと理解しました。P/Lの当期純利益はB/Sの純資産となり、それが資産の安定性に寄与します。そのため、当期純利益が赤字の場合、資産の減少や負債の増加が見込まれることになります。また、負債や純資産はお金の集め方であり、資産はお金の使い方であることも学びました。 お金の使い方はどう? 具体的な例では、コンセプトの実現というお金の使い方を考える際、返済可能範囲を含めたお金の集め方の現実性を想像することができます。これにより、B/Sの構造を理解できるようになりました。 利益と体質の関係は? 次に、自社や他社のB/Sを確認し、その企業の体質について想像してみる課題がありました。P/Lで黒字、または赤字だった場合にB/Sにどのような影響が出るのか、また、大きな固定資産を抱えた場合の資金調達方法を事業体質をもとに考察することが求められます。さらに、ベンチャー企業が特定の機関から資金調達を行った際に、これがB/Sにどのように反映されるのかという点についても考えるようになりました。 返済と投資はどうなる? また、自社のB/Sが事業コンセプト通りになっているかを確認したり、1年以内に返済が必要なものと現金化が可能なものを見比べ、企業の健全性を確認することが重要です。さらに、大規模な投資や損失がB/Sにどのように影響し、P/Lにどのように記載されるかを確認することが推奨されています。 資金の動向をどう見る? 最後に、固定資産と流動資産を比較し、資金の動きが激しいのか少ないのかを確認することも学びます。これにより、企業の財務状態をより深く理解することが可能になります。

データ・アナリティクス入門

ロジックツリーで解決策が見えた!

問題解決の基本ステップは? 問題解決は段階的に考えることが重要です。まずは「What」として、何が問題なのかを明確にし、あるべき姿と現状を把握し、これについて周囲と合意を取ります。「Where」では問題がどこにあるのかを特定し、「Why」ではなぜその問題が起きているのかを分析します。そして「How」では、問題をどのように解決するかを考えます。 ロジックツリーで何が変わる? ロジックツリー(MECE:もれなく・だぶりなく)は、問題を解決する際のWhere、Why、Howの各段階で有効に活用できることがわかりました。これを様々なシーンで使えるように、もっと積極的に取り入れていきたいと考えています。 問題をどう分解するか? 問題を分解する方法には、層別分解と変数分解(掛け算)の2つがあります。これまで意識して使っていなかったので、状況に応じてこれらの方法をうまく引き出せるようにしたいです。 共通認識をどう持つ? 計画やあるべき姿が明示されていないケースが多くあります。このため、まずロジックツリーを使って問題を以下のように切り分け、可視化し共通認識を持つことが大切です。解決策を提案する際にも、すぐに実現可能なことだけでなく、様々な解決案を考慮し、長期的に良い方向に進むための基礎となる資料を作成していきたいです。 MECEをどう活用する? また、数値データでない分析においてはMECEを意識し、作業に取り掛かる前にWhatやWhereに時間をかけることが重要です。変数分解も選択肢として考慮し、「分析の本質は比較であり、意思決定のためのものである」という点を忘れずに実践していきます。今後は部下に教えることも視野に入れ、データを整理しながら作業するように心がけたいと思います。

デザイン思考入門

解決策じゃない!問いから始まる学び

アンケート変更の必要は? 自社サービスのユーザー向けに定期的に開催しているイベントでのアンケートについては、これまで項目を変更せずに実施してきました。項目変更を行うと比較が難しくなると考えたためです。今後は、アンケート内容に本当に変更の必要があるのか、改めて問い直しながら検討していきたいと思います。 インタビュー内容は羅列になる? ユーザーインタビューでは、インタビュー後の記事化において、質問内容と返答が単なる羅列になりがちな点を改善する必要を感じました。コーディングを実施することで、情報の分析がしやすくなるとともに、他者へ伝わりやすいアウトプットにつながると考えています。まだ試行段階ですが、各担当者と意見交換の場を設け、特にインタビューに関しては、こちらが意識してヒアリングしないと暗黙知を引き出せないため、事前に質問項目に組み込むか、必須項目としてルールを決めることにしています。 定性定量の違いは何? また、今回の取り組みで、解決策を前提に課題を定義しないという考え方や、分析データの収集方法には定量分析と定性分析の2種類があることを認識しました。定性分析は、感情など数値化や可視化が難しい情報の解析に適しており、暗黙知と形式知の両面を理解することが大切です。暗黙知については、こちらから意識して引き出す必要があると感じています。 課題設定はどう見直す? これまで、課題は解決策をあらかじめ想定したうえで捉えていたため、今回の「解決策ありきで課題を定義しない」という視点は大きな気づきとなりました。定性分析の難しさを実感しているため、まずは自分自身のナノ単科におけるカスタマージャーニーを作成し、感情の可視化の練習からアプローチのコツをつかめるよう挑戦していきたいと思います。

データ・アナリティクス入門

仮説と比較で読み解く数字の真実

仮説はなぜ重要? データ分析は、ただ数字を羅列するだけではなく、自分なりの仮説を立て、その仮説を検証するための手段であると再認識しました。数字を見てもただの数字遊びになってしまうため、最初に明確な仮説を設定し、その仮説に基づいて分析を進めることが大切だと感じています。 過去比較はどう読み解く? また、分析においては過去のデータとの比較が非常に重要です。たとえば、あるプロダクトの売れ行きが明確な季節変動を示している場合、過去の同時期や前年のデータと比較することで、その背景にある傾向に気づくことが可能になります。このような比較を通じて、何が影響しているのかを客観的に把握する意義を実感しました。 利用状況はどう見極め? 自社プロダクトの販売実績や機能の利用状況の可視化にも、こうしたデータ分析の手法を取り入れています。毎月、売れ行きや利用状況を分析し自分なりの考察をまとめていますが、最近は単調になりがちで、より深い洞察が求められていると感じています。たとえば、「なぜ売れているのか、なぜ売れていないのか」、「なぜ機能が使われているのか、使われていないのか」といった真因を把握するために、属性や業界別の利用状況・売上トレンドを過去データと比較して分析できるスキルを身に着けていきたいと思います。 仮説検証で何が変わる? さらに、データ分析を行う際は、まず自分なりの仮説を必ず設定することが基本です。たとえば、ある規模以上のお客様では機能利用率が高いが、規模が小さいお客様では逆の傾向があるといった仮説を最初に立てることで、その後の検証や分析がスムーズに進み、より多くの気づきを得ることができると考えています。これまで学んだ分析スキルを活用し、今後も実践的に取り組んでいきたいと思います。

マーケティング入門

旅行商品のポジショニングで新たな価値発見を探る旅

商品変更のコストとリソースは? 一般的に他社との差別化を考える際、まず商品そのものの変更(内容・成分・機能・パッケージなど)や販促の工夫(インフルエンサーとのタイアップ、CM、店舗)が思いつきがちです。しかし、商品そのものを変更すると、その分コストや社内リソースを多く割かざるを得なくなります。 ポジショニングで新たな価値を? ところが、商品自体を変えずにポジショニングを変えることで、新しい顧客に価値を見出してもらうという考え方は非常に新鮮でした。このポジショニングの考え方は、有形商材を扱うメーカーには向いているかもしれませんが、無形商材である旅行商品にどう適用するかのイメージがいまいちつかめません。 海外旅行との提携は? 現在所属している部署では、海外の旅行会社と提携して商品造成や手配業務を行っています。そのため、今回のポジショニングの考え方を応用する機会が少ないように感じます。ただし、旅行業界全体の中で、会社がどのポジションにあるのか、どのような根拠に基づいてそれが設定されているのかを考えてみたいと思います。 旅行商品の成功事例は? 具体的には、以下の点について調査したいです: - 旅行商品において、ポジショニングを変えることで新しい顧客に価値を提供した具体例(アウトバウンド/インバウンド) - 過去に旅行商品がポジショニングを変えることで成功した事例(アウトバウンド/インバウンド) - 現在の会社が展開している旅行商品の種類とそれぞれのポジショニング - 他社と比較した際に、自社のポジショニングが適切か、他社と被っていないか、または他社が狙っていないポジションがあるのかどうか これらを踏まえ、旅行商品におけるポジショニングの新たな可能性を探りたいと思います。

アカウンティング入門

財務分析で企業の真価を見抜く方法

現金の動き、どう感じる? 「現金として出入りしやすい順」に並んでいるという視点を知ることができたのは、大きな発見でした。現金の出入りがしやすい(1年以内)ものを「流動」、出入りがしにくい(1年以上)ものを「固定」と考えるのも、個人的には非常に共感できるポイントでした。 企業のB/Sはどう? 事例として紹介されていた具体的な企業名を挙げることは避けますが、固定資産の多い企業において、事業の特徴がその企業のB/Sから読み取れるのは興味深かったです。特に、鉄道会社や不動産会社の固定資産が大きな割合を占めることを考えると、他の同業他社と比較してみたくなります。 流動計上、納得できる? また、買掛金など営業サイクルに含まれる資産・負債を流動とする考え方も、1年以内に現金として出入りするものとして理解しやすく納得しました。 B/S活用場面は? ①B/Sを現実の場面で活用するイメージがまだ明確にできずにいます。例えば、M&Aのニュースがあった際、買われる企業のB/Sを見て、純資産とのれんの程度を確認し、その買収額が妥当かどうかを掴むのに使えるかもしれません。 買収の価値は? ②また、買収先を検討する際、その企業の価値やシナジーを考える上で、妥当な買収額をイメージするための参考にしたいです。 業界分析、進む? 11月中に、人材業界の競合他社のB/Sを5社確認し、各社の資産・負債における流動・固定、純資産の割合の違いを比較してみる予定です。さらに、建設業界とエネルギー業界についても、それぞれ5社の特徴を調べてみようと思います。仮説としては、人材業界は、特定の企業と純資産の割合が近いとされ、建設・エネルギー業界は、特定の企業と固定資産の割合が似ていると考えています。

「比較」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right