データ・アナリティクス入門

仮説構築で新たな視点を得る方法

仮説構築の秘訣は? 仮説を構築し、データを活用して問題解決を進めるためには、いくつかのステップが重要です。まず、問題の発生箇所を明確にすることが必要です。具体的には、問題の所在を深掘りするために、原因仮説を立て、検証のためのデータを集めます。仮説を効果的に立てるためには、フレームワークの活用が有用です。 4Pのポイントは? マーケティングの視点では、4Pフレームワークを使って事業展開を整理することができます。製品、価格、場所、プロモーションの各要素が顧客のニーズや適正かどうかを評価します。適切なデータを集める方法としては、既存データの活用やアンケート、インタビューが挙げられます。各手法の長所と短所を理解して、目的に応じた選択が求められます。 多角的検証は? 仮説を立てる際には複数の仮説を用意し、異なる視点から網羅的に検討することが大切です。仮説の検証に際しては、比較の指標を意識的に選択することが必要です。具体的には、データを収集・分析し、仮説に説得力を持たせるためには、反論を排除する情報まで検討することが重要です。 意義はどこに? 仮説設定の意義としては、検証マインドや問題意識の向上、迅速な対応が可能となる点が挙げられます。こうしたプロセスを経ることで、自分の業務に対する関心を高めることにつながります。 販促の効果は? 販促企画の効果検証や販売目標達成の実績を見る際には、売り上げが伸び悩んでいる商材を特定し、どの要素に問題があったのかを4Pを用いて検証することが求められます。これを元に具体的な施策の効果を評価し、次の糧とすることが重要です。 実績比較はどう? 販売実績を基に、商品ごとの実績を昨年と比較し、価格変動の影響や来客数の動向、プロモーションの効果を定量的に評価すべきです。それにより、次年度の方針を検討することが可能となります。このように、精緻な分析を通じて課題を明確にし、解決策を打ち立てるための指針とすることが重要です。

データ・アナリティクス入門

購入プロセスを深掘りして見える学び

プロセス分解はどう? 原因の分析では、プロセスに分解することが重要です。商品が購入される際には、生活者は多様なプロセスを経ており、これらのプロセスには様々なパターンがあります。まず、これらのパターンを分類し、さらにプロセスごとに分けて考えると良いでしょう。候補を絞り込む際には、まず広い視点で選択肢を洗い出し、その上で排除する根拠を準備します。 仮説はどう立てる? 原因仮説を立てるときは、思考の範囲を広げることがポイントです。ここで役立つのがフレームワークと対概念の活用です。例えば、3Cフレームワークは自社、競合、顧客の観点から分析します。一方、対概念では競合を超えた広い範囲、例えばカテゴリ市場などで仮説を立てることができます。複数の案を比較・検証する際には、条件を揃えて判断することが求められます。 購入プロセスは? 商品が購入されるプロセスとしては、ブランド力がある場合を除けば、次のような流れがあります。まず、商品が目に留まり(パッケージの印象)、次に興味を引き(パッケージ表面の文言)、さらに商品説明を読んで納得し(手に取る)、最後に購入される(かごに入れる)。購入後、消費者に良い商品体験を提供することでブランドイメージが形成され、繰り返しの購入につながります。リピーターが少ない場合には、この商品体験がプラスイメージでない可能性が考えられます。一方で、販売場所が十分にあるのに新規顧客が増えない場合には、このプロセスに分解して原因を特定すべきです。仮説は3Cに加え、それ以外の視点からも考えることが大事です。 魅力の伝え方は? また、どのような商品が消費者の目に留まるのか、どのようなキャッチコピーが購買意欲を刺激するのか、一般の消費者と商品ターゲットの購買プロセスについて理解を深める必要があります。そのためには、まず自身が商品を購入する際に何を基準に判断しているのかを考えることを心掛けると良いでしょう。さらに、店頭観察やアンケート調査を実施することもおすすめです。

データ・アナリティクス入門

仮説を駆使して問題解決力を高めよう

問題解決のステップとは? 問題解決の4つのステップの「Where」は、問題の所在の仮説を立てることであり、「Why」に繋がっていく。今回はその「Where」について学んだ。 仮説の立て方とは? 仮説とは、ある論点に対する仮の答えもしくは、分かっていないことに関する仮の答えである。重要なポイントは、複数の仮説を立てることと、それらの仮説同士にある程度の網羅性を持たせることである。また、仮説を検証するためのデータを評価する際には、何を比較の指標とするか、意図的に何を見るかを考えることが求められる。そのため、数字を計算する手間を惜しんではならない。 検証マインドをどう育む? 仮説を考えることで、検証マインドの向上と説得力が高まり、関連することを調べることによって意思決定の精度も高まる。結果としてステークホルダーに対する説得力が向上し、問題解決のスピードもアップできる。アンケートなどを活用して情報を総動員し、考えることが重要である。また、「3C」や「4P」などのフレームワークを活用することも効果的である。 データ分析の重要性とは? データ収集においては、都合の良いデータだけを集めるのではなく、可能性を排除するために真剣にデータと向き合い、何と比較しての分析かを明確にする必要がある。会議資料や上長への報告を見返すと、実績や結果については真剣にデータを集めているが、データを元にした仮説設定や計算はほとんど実施されていない状況であった。結果だけを羅列するのではなく、それを根拠に仮説を立てるための計算や比較を行い、他の説を排除する仮説を設定することで、施策の根拠とし納得感を得られるようにする。 明日への準備は万全か? 明日が月初なので出てくる数字を元に、結果に対する複数の仮説を立て、その仮説に対する根拠を数字で計算・調査した上で問題解決の手段を考える。アンケートやヒアリングを日々実施しているが、分析に役立つアンケートとなっているか見直しも必要だ。

データ・アナリティクス入門

数字と式が開く学びの扉

数式への意識はどう? やっと、数式や数字の取り扱いが登場して安心しました。データ加工は、数字、図、数式を扱うものであり、普段はなんとなく利用していたものの、特に数式については意識して使っていなかったので、この機会にしっかりと意識できるようになりました。 代表値の使い分けは? 代表値については、平均値、中央値、そして最頻値の3種類があり、高校で学んだ記憶があります。状況や特徴に合わせて適切に使い分けることが必要だと感じました。 散らばりをどう捉える? また、散らばりに関しては、分散、偏差、標準偏差という概念があります。これらのイメージがつかめると、グラフ作成時の種類の選択や切り口の検討に役立つと考えています。正規分布や、偏差を標準偏差に変換する方法を理解できれば、さらに活用の幅が広がると感じました。 応用範囲はどう広がる? これらの手法やツールは、あらゆる業務や自分自身の行動パターンにも応用できると考えています。新しい仕事で具体的に何をどこまで行うかはまだ決まっていませんが、逆にどのような状況にも対応できるはずです。以前の仕事では、過去のデータや何かとの比較で数%の違いを強調していたことがありましたが、散らばりが大きい場合、その違いが意味を成さないこともあるため、今後は数字を見る際にその点を意識していきたいと思います。 習熟のための練習は? まずは練習として、代表値をいろいろと算出しながら使い方に習熟していきたいです。数式は単に暗記するのではなく、意味や算出方法を理解し、それを活かすことで活用の幅を広げることを目標としています。以前、統計学の教科書を購入して半分ほど学び直した経験があるため、改めて復習しながら残りの部分も学習していきたいです。 散らばりから何を探る? また、散らばりの大小からどのような検証ができるのか、またどんな示唆が得られるのかをさらに深めたいと思います。最後に、統計検定にも挑戦する予定です。

データ・アナリティクス入門

視点を超えて拡がるデータの世界

要素の重要性は何? 分析に必要な要素としては、プロセス、視点、アプローチの3つがあると学びました。前回はプロセスについて掘り下げた講義でしたが、今回は視点とアプローチに重点を置いて進められ、その重要性を実感しました。 視点の捉え方はどう? 講義では、まず視点としてデータを俯瞰的に捉えることの大切さが強調されました。一つのデータ情報に固執すると、全体のインパクトを見逃し、局部的な視点ではトレンドやパターンを捉え損ねる可能性があると感じました。そのため、まず広い視野で全体を把握し、どこを掘り下げるかを判断しながらスコープを徐々に絞っていくことが、目的達成のためには必須であると言えます。 視点の基本はどこ? 視点に関して、講義では以下の観点が挙げられました:  ・インパクト  ・ギャップ  ・トレンド  ・ばらつき  ・パターン 数値と図で説得できる? また、アプローチについてはグラフ、数字、数式を用いる方法が効果的であり、具体的な数値や図を使った分析が理解を深めるポイントとして紹介されました。 インパクトをどう捉える? 顧客のサービス利用データを検証する際には、どのセグメントが最も大きなインパクトを持っているか、また長期的な視点での変化を確認することが重要だと再認識しました。こうした視点から、インパクトの大きいセグメントに対して営業リソースを集中させたり、コンテンツマーケティングを推進する戦略も考えられます。 セグメント分析は十分? さらに、顧客セグメントの検証をより深堀りする必要性も感じました。導入ユーザーのセグメント検証においては、単に導入社数が多いセグメントだけでなく、導入社数は少ないもののインパクトが大きいセグメントが存在しないかを検討することが求められます。また、単なる属性データの比較に留まらず、実際の顧客行動をイメージしながらデータと照らし合わせて検証を進めることで、より実践的な洞察が得られると感じました。

データ・アナリティクス入門

問題解決をステップで学ぶ魅力

問題解決の要点は? ビジネスにおける問題解決には、ステップで考えることが重要です。 何が課題なの? まず、直面している課題や状況を明確にすることから始めます。これを「何が問題か?」という問題定義の段階として考えます。そして、「あるべき姿」と「現状」のギャップを定量的に捉えます。この段階で、問題の具体的な側面を客観的に整理することが肝心です。 どこで障害発生? 次に、問題の発生箇所を特定します。これは要素分解を行い、問題が発生している場所を見極めるプロセスです。「どこに問題があるか?」を明確にし、優先してアプローチすべき箇所を洗い出します。その際、さまざまな切り口を用いて視野を広げます。仮説を複数立て、それらをデータで検証することが推奨されます。 なぜそうなったの? 問題の原因を分析するためには、「なぜ問題が起きているのか?」を探ります。このステップでは、ロジックツリーを用いることが効果的です。ロジックツリーは問題を漏れなくダブりなく(MECE)分類する方法で、全体像を把握し、思考の幅を広げる手助けとなります。 どう解決すべき? 次に解決策を考えます。「どうするか?」を定義し、原因に対する有効な解決策を提案します。ここでも、ロジックツリーを使うことで、さまざまな解決策を広く考えることができます。 どの手法が役立つ? また、MECEに基づく分解手法も問題解決の際に有効です。階層文界や変数分解を用いることで、全体を細分化し、問題を明確に捉えることが可能です。MECEに考えることで、ビジネスチャンスを逃すことが少なくなります。たとえば、販売施策では商材ごとや月ごと、エリアごとの比較を行い、実績と目標を比較することが求められます。 どう進めるか? このように、問題解決のプロセスでは段階的に考え、具体的な解決策に導くことが重要です。目標達成のためには、データを基に根拠を持った施策を考え、実行することが求められます。

データ・アナリティクス入門

掘り下げる力が課題解決を変える

問題解決の流れは? 問題解決のプロセスを整理するために、まずは「問題解決の4ステップ」について学びました。基本の流れは、what(問題の明確化)、where(問題箇所の特定)、why(原因の分析)、how(解決策の立案)という順番です。中でもwhereの部分では、どこに原因があるのかを深く掘り下げ、分析対象の範囲を絞ることで、原因を検証しやすくする点が強調されています。 仮説の立て方は? さらに、原因に対する仮説を立てる際には、複数の仮説を出すことや、異なる切り口(ヒト・モノ・カネなど)から考えることが重要です。これにより、一面的な見方に偏らず、網羅的な分析が可能になります。そして、仮説の検証に向けて、どのようなデータを収集するかを意図的に選定し、意味のある対象から適切な方法で情報を得ることが求められます。 データ収集はどう? また、都合の良いデータだけでなく、比較のための情報収集も欠かさず行うことが必要です。反論を排除するために、仮説に反する情報も踏まえた検討が重要で、これにより説得力のある分析が可能になります。ここでは、フレームワークとして3C(市場、競合、自社)や4P(製品、価格、流通、プロモーション)を活用する方法が示されています。 全体評価は? 総評として、問題解決の4ステップがしっかりと整理され、特にwhereの部分を掘り下げる姿勢が評価されています。今後は学んだ理論を実際のビジネスシーンに応用し、複数の仮説の中から優先順位を明確にする方法を検討することが期待されています。 進捗報告はどう? また、メンバーの進捗報告に際しては、各自がこのプロセスに沿っているか確認することが重要です。仮説が複数たてられているか、異なる視点での切り口が取り入れられているか、さらにはデータ収集が適切に行われているかを、リーダーを中心としたレビューの場でしっかりと意見交換を行い、全体の分析精度を高めるよう努めてください。

データ・アナリティクス入門

検証の軌跡が未来を変える

原因って何が影響する? 問題の原因を追究するためには、対象となる現象が起こるまでのプロセスを細かく分解し、各段階の要素を把握する手法が有効であることを学びました。また、複数の可能性を網羅的に洗い出し、根拠に基づいて最適な解決策を絞り込む方法も身に付けることができました。 検証はどのように進む? 仮説検証の手法としてのA/Bテストにおいては、検証対象の効果を正確に判断するために、できる限り条件を揃えた同一環境下で比較することの重要性を再認識しました。これにより、得られる結果がより信頼性のあるものになると実感しました。 なぜ離脱が発生する? さらに、ユーザーの利用過程をプロセスに分解し、どの段階で離脱が発生しているのかを探るファネル分析についても、具体的な事例を通じて理解を深めることができました。一方で、実際にA/Bテストの結果をもとに今後の方針を決定する際、テスト実施自体に対する関係者からの合意や納得を得る難しさを改めて感じる機会もありました。 分析のポイントは? そこで、What、Where、Why、Howの各ステップに沿って分析を進める重要性を認識しました。特に、WhyとHowの部分にスムーズに入れるよう、まずはWhatとWhereについて関係者全員で共通認識を持つことが不可欠です。また、総合演習では「満足度が下がっている」という結果だけに飛びつかず、どこに問題があり、なぜそのような状況に至ったのかを分解し、分析・判断することの大切さを学びました。 具体策はどうすべき? 具体的には、以下の点が重要です。まず、What、Where、Why、Howの各段階に沿って、問題を丁寧に分解すること。次に、不正解の仮説は存在しないという前提に立ち、考えられる仮説を2~3案以上、網羅的に検討する癖をつけること。そして、A/Bテストやファネル分析を通じて仮説の正否を検証し、施策の精度向上につなげることが大切だと感じました。

データ・アナリティクス入門

データの本質を掴む!実務に活かす分析技術

分析の本質とは? この学びを通じて、分析の本質を理解することができました。分析とは「比較」することが核心であり、特に条件を整えた「Apple to Apple」の比較が重要です。まずは「何を明らかにしたいのか?」を明確にし、そのために「何と何を比較すべきか?」を定めることが大切です。 棒グラフ作成の注意点は? 印象に残った点として、棒グラフの縦軸と横軸など、細かな部分にまで注意を払ってより分かりやすく伝えることが求められるということです。例えば、縦軸は上がった・下がったを示し、横軸は要素間の比較を表現します。普段は手元のデータだけで判断してしまうことが多かったと気づかされました。この分析の本質は、課題解決のための分析決定だけでなく、解決策の実行後の効果検証にも活用できると感じました。 具体的な応用法は? 具体的な応用として、解決策の効果を比較することが挙げられます。解決策を導入する場合としない場合での比較を行い、条件をできるだけフェアに揃えることが重要です。この考え方を業務に活かすことで、顧客の課題を定量的に解決する方法を確立し、納得できる成果を提示できるようになると期待しています。 より良い分析へのプロセス この知識はすぐに実務に活用できるもので、特に分析の本質を理解できたことは大きな収穫です。今後、以下の流れを意識して分析の質を向上させていきたいと思います。 まずは課題の明確化から始め、何が課題なのかを特定し、解決するためにどのような分析が必要かを考えます。次に仮説を設定し、それを検証するためのデータを収集します。重要なのはフェアな条件で比較できるようにデータを集め、分析結果を分かりやすく可視化することです。 最後に、結果を解釈し示唆を整理します。ただ結果を提示するだけではなく、その傾向や含意をまとめ、目的に沿った分析であるかを確認します。この一連のプロセスを通じて、より質の高い分析を目指していきます。

データ・アナリティクス入門

データの見方が変わる瞬間

基本思考をどう整える? 今回の動画や演習を通して、従来は何となく基本的な見方でデータを眺めていた自分に対し、根本的な考え方の基礎を再認識することができました。表面的な比較だけでなく、意図的にデータを加工して比較することの重要性を実感しました。 数字と視覚、どっちが正しい? また、他のデータと比べる際には「数字に集約して捉える」ことや「目で見て捉える」視点が必要だと認識しました。一目で把握できる程度のデータ数であれば十分ですが、ある程度の規模がなければデータの価値は向上せず、大量のデータを扱う際には加工する手順が不可欠だと理解しました。単純に平均値を見るのではなく、値の分布やばらつきに注目することも大切です。 仮説とデータの整合は? さらに、平均値やばらつきを基に、大量のデータを加工し、ビジュアル化・グラフ化を行うことで仮説と照らし合わせ全体を俯瞰する手法の重要性を再確認しました。分析のプロセスでは、まず目的や仮説を明確にした上でデータの収集が行われ、その後、仮説の検証や分析を繰り返すことが意義のあるものだと改めて理解しました。 各種平均の使い分けは? また、データの捉え方においては、代表値としての単純平均、加重平均、幾何平均、中央値や、散らばりとしての標準偏差があり、それぞれを目的に応じて適切に使い分けることが重要であると感じました。まずは自分なりの仮説やストーリーを意識し、必要なデータを整理してから分析に取り組むことが大切です。さらに、データのビジュアル化にも注力し、目で見て整理する方法にチャレンジしていきたいと思います。 未来のデータ戦略はどう? 今後は平均値やばらつきという視点を重視しつつ、加重平均や幾何平均も意識的に活用していきたいと考えています。また、標準偏差については、効果的に使用できる場面を見極め、業務の中での活用を目指すとともに、ツールの扱いについても理解を深める必要があると感じました。

戦略思考入門

4つの経済性が切り拓く未来

4つの経済性って何? 4つの経済性について学び、それぞれに特徴があることを理解しました。まず、規模の経済は、生産数量が増えることで製品1つあたりのコストが低減するという点です。次に、習熟効果は、累積生産量が増加することで、経験値が積み上がり早期に習熟効果を得られるという特徴があります。さらに、範囲の経済性は、既存の資源を複数の事業で活用することで、各事業を個別に行うよりもコスト削減が可能となり、経営、生産、販売、投資などのシナジーを生み出すことに寄与します。最後に、ネットワークの経済性は、参加者が増えネットワークが充実することにより、サービスの提供や活用の利便性が向上するというものです。 強みと課題は何? 自社は主に製品製造を行っており、規模の経済、習熟効果、範囲の経済性は既に強みとして活かせています。一方で、ネットワークの経済性については、概念としては把握しているものの、実際の活用はまだ十分ではありません。今後、自社の発展を図るため、製品のネット販売や広告、口コミの活用を進めていきたいと考えています。 新製品の戦略は? また、新たな価値を持つ製品に関しては、小規模な販売計画を立てています。既存の顧客を中心にハードウェア製品の販売からスタートし、規模の経済、習熟効果、範囲の経済性を構築することは比較的容易と見込んでいます。一方、ネットワークの経済性に関しては、再生材を用いたリサイクル製品のWEB販売や口コミの拡散といった試験的な取り組みを進め、少しずつ成果を上げながら、新規製品の宣伝と展開を加速させる方針です。 未来の展開はどう? 今後は、新たな価値を持つ製品の開発、実証検証、広告展開、テスト販売のオペレーションプランを作成し、各経済性をどのタイミングで活用するかを明確にしていきたいと考えています。具体的には、6月中旬までに計画を確定させ、年内にはテスト販売を実現することを目標としています。

データ・アナリティクス入門

仮説構築のフレームワークで実力アップ

仮説構築で何を優先すべき? 仮説構築のポイントについて学んだことは、以下の通りです。 まず、仮説構築では複数の仮説を出すことが重要です。3Cや4Pといったフレームワークを活用し、網羅性を持たせることが求められます。決め打ちにしない姿勢も大切です。 次に、仮説を絞り込むための基準としては、具体的なデータや根拠が必要です。たとえば、SNSのプロモーションが弱いと判断する場合、その根拠を明確にする必要があります。 どのデータを用いるべき? データ取得や計測前には、指標の絞り込みが重要です。何を比較すれば仮説が立証されるのかを確認します。例えば、故障件数ではなく、1件あたりの対応時間を指標とすることが有効です。 また、比較対象のデータも集める必要があります。Aが正しいというだけでなく、BやCを否定するデータも必要です。これにより、より説得力が増します。 仮説検証の鍵とは? 仮説には「結論の仮説」と「問題解決の仮説」があり、それぞれの使い分けと違いを意識することが重要です。問題解決の仮説では、社内のシステム切り替えにおいて複数の製品候補の中から1つを選ぶ際、網羅性のある原因究明と問題箇所の特定が求められます。A製品が良いというデータだけでなく、他の製品(B, C)がダメというデータも揃えることで、Aの比較優位性を証明することができます。 フレームワーク選択の重要性 仮説検証のシミュレーションでは、まず仮説の洗い出しを行います。3Cや4Pのフレームワークが適用できるかどうかを検証し、適していない場合は他のフレームワークを検討します。 最後に、データ検証の洗い出しでは、取得可能なデータの確認と、どの指標が計測・取得すべきデータなのかを特定します。これにより、仮説の検証がスムーズに進むでしょう。 以上のポイントを踏まえて、仮説構築と検証のプロセスを実践していくことが大切だと感じました。

「比較 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right