データ・アナリティクス入門

振り返りが未来を変える瞬間

復習はどう進める? これまでの学びを振り返り、今後のありたい姿と具体的な取り組みを体系的に整理できました。振り返りを進める中で、全ての内容を完全に洗い出せたわけではなく、すでに忘れてしまっている部分も多いことに気づきました。そのため、何度も繰り返し復習し、実践の中で活用することが大切だと感じています。 管理とサポートの課題は? 私の業務は、製品の管理とサポートに関わるものです。サポート内容に対する不満と製品そのものへの不満があり、それぞれ解決すべき課題が異なります。また、即座に対処できるものと、投資や時間を要するものも混在しています。相関分析を活用して、不満の原因となる主要項目を特定し、優先順位をつけた上で対応していく意向です。 方向性のズレはなぜ? これまでの学びの中で、方向性を見誤ったり着眼点がずれてしまうことがありました。そのズレが生じた原因を、経験や定性的なデータをもとに検証し確認する必要性を感じています。さまざまなフレームワークを活用し、仮説を立てたり目的を明確にすることが、今後の正確な分析に欠かせないと考えています。ただし、数値だけに頼ると誤った解釈につながる恐れがあるため、解説書や事例を通じて知識をさらに深めるよう努めたいと思います。

データ・アナリティクス入門

データ分析で見えてくる未来へのヒント

データ分析の基礎を理解するには? データ分析を始めるにあたり、まずはデータの形式を理解し、その違いを把握することが重要だと感じました。分析に必要なデータを集め、形式に合わせた加工を施し、さらに可視化することで示唆を得る流れを認識しました。特に、データの性質をしっかり理解しないままでは、可視化しても意味がないことを学びました。 どう業務課題を探索する? 例えば、各店舗での様々な商品の契約状況から、それぞれの商品の契約者に共通する特徴を可視化したり、取引履歴と商品の契約状況の関連性を探るといった作業は、まずデータの性質を把握することから始まります。データを比較し、その特徴を掴むことで、業務課題に関連するデータが何であるかを見極めることができます。 他社事例をどう活かす? また、他社のデータ活用事例を知ることで、自社の業務に置き換えて考え、業務上の課題を発見する手がかりとすることができました。社内においても、各種システムで収集・蓄積されているデータの内容を把握し、それを整理して業務課題を解決するための手法を模索することが大切です。こうしたプロセスを経て、データの性質を十分に理解し、適切に可視化し比較することで、より良い業務改善に繋げることができると感じました。

アカウンティング入門

企業の数字を読み解く楽しさに目覚めた瞬間

損益計算書の違いをどう理解する? 損益計算書はビジネスモデルによってその構成比率が全く異なることを、事例を通じて学ぶことで非常によく理解できました。特に、実際のケースを用いてその時代に発生した出来事に企業がどう対処したのかを数字から予測することができる点がとても面白く、個人的には大きな発見でした。 バランスシートをどう活用する? 業務においては素直で王道的なバランスシート(B/S)に触れる機会が少ないものの、他社のB/Sを紐解くことで株式投資のスキルを深めることができると感じました。これからは、IRレポートを読むだけでなく、数年単位でのB/Sを眺めて投資先の選定に役立てたいと思います。 数字の裏をどう読むか? 具体的には、まず興味のある企業を選定し、その企業のホームページを見て提供する価値について考えた上で、B/Sを深掘りしていきたいと考えています。 苦手意識をどう克服した? 今回、このコースに参加するまではファイナンス関係の数字やワードに対して苦手意識を持っていましたが、基礎を学ぶことで数字の裏にあるビジネスについて読み取る楽しさを味わうことができました。今後も実践的なスキルを身につけるために、さらなる深掘り学習を続けていきたいと考えています。

データ・アナリティクス入門

ふと気づく実務に溶ける学び

学びはどう活かす? 実務において、学んだことが実際に活かせるかどうかの判断が難しいと感じました。振り返ると、無意識のうちに今回の学びを業務に取り入れていた事実に気づき、今後同様の状況ではあえて意識的に活用する方法を考えたいと思います。 データパターンは? シミュレーションの提示業務では、どのデータパターンを示すべきか検討しました。複数パターンを提示する意義を考えた結果、最もネガティブなケースのみを示すことで目的が達成できると判断し、ロジックツリーを用いて場合分けを行いました。 商品属性の分析は? また、実務では購入しているパネルデータを用いて、自社商品の属性(主原料やサイズなど)に基づく分析を実施しています。ある部署から、異なる軸を同列に分類して分析してほしいという要望があり、戸惑いを覚えたことがありました。しかし、互いの議論を重ね、重複する項目についてどちらに寄せるかの基準を設定した結果、目的にかなった提案へとつなげることができました。今後は、視覚的な説明を取り入れることで、より迅速に合意形成が図れるようにしたいと考えています。 MECEのポイントは? 最後に、MECEを設定する際のポイントや具体的な事例についても、ぜひご教示いただきたいです。

クリティカルシンキング入門

分解でひらける!業務改善の秘訣

分解の意義は? 物事を分解する重要性について学び、状況の解像度が上がり、どこに問題が潜んでいるかが見えやすくなることを実感しました。問題解決にあたり、全体をそのまま捉えるのではなく、各部分に分けて考えることで、より明確な対策が立てられると感じました。 データ分類は何で? 特に、データを仮説をもって分類し、どの切り口で分ければ自分が知りたい情報が明確になるのかを考えるプロセスが印象的でした。層別分解、変数分解、プロセス分解といった具体的な手法を学ぶことで、実際の業務においても、売上やクライアント提案、SNSなどのデジタルメディア戦略に応用できると感じました。 どの対策が有効? 実際の事例として、例えば自分や担当媒体の売上分析において、売上構成を細分化して傾向をつかむと、具体的な対策案をいくつも立てられることを学びました。また、クライアントへの提案では、ありたい姿を数字で設定し、その後、どの変数が大きな影響を及ぼしているかを分析することで、より説得力のあるプランが構築できると実感しました。 実践への自信は? 今回の学びは、単なる理論にとどまらず、自社メディアの成長や日々の業務改善にも直結する方法論であり、今後の実践に向けた大きな自信につながりました。

戦略思考入門

取捨選択で磨く未来の軸

優先基準は何だろう? 今週のテーマは「取捨選択」であり、優先順位を上げるべきものや見送るべきものを判断するためには、情報収集と分析が不可欠であると実感しました。その上で、次に何を重視するかという軸を明確にすることも重要です。また、ビジネス環境や自社の状況は刻々と変わるため、定めた軸に沿って定期的に状況を見直し、ヘルスチェックを行いながら方針を更新する必要があると感じました。 AI進化の影響は? さらに、生成AIやAIエージェントの進化に伴い、自社事業への影響が大きくなっている現状を踏まえると、リソースの配分や断念すべき部分の判断を迅速に行う必要があります。その上で、部下への指示や壁打ちの場面でもこれらのツールを効果的に活用できると感じました。世間のブームや期待感に流されることなく、冷静な情報収集を基に自部署の方向性を見定めることが重要です。 現状の課題は何? 現状では、自部署の課題に注目しすぎて、モグラ叩き的に個別の対策を講じている状況です。そこで、周囲の環境や社内の状況を改めて整理し、どの事業に注力すべきかを明確にすることが求められます。また、慣例的に続けている効果や効率が低い業務を見直し、効率化や中止の判断を行うべきだと考えています。

戦略思考入門

捨てる選択で広がる可能性

気づきはどう生かす? 「捨てる」選択を行う際、自分が気づいていない側面があると実感しました。そこで、気づけるための行動として、新入社員の意見を聞いたり、他者と比較したり、他の事業所の職員と話すなどのアプローチが有効だと考えています。また、資金面での制約があると、自社内で全てを完結させようとするトレードオフが生じがちですが、その選択肢を見直し、専門家に任せるか、あるいは専門知識を持った社員を採用することで新たな突破口が開けるのではないかと思います。 ROIは何が大切? また、優先順位を決める際にROI(投資対効果)まで考慮していなかった点に気づき、今後はぜひ取り入れてみたいと考えています。 優先順位はどう決定? まずは、捨てるべきものが何かを検討し、無駄な業務を省くことから始めます。次に、新入社員に意見を求めた上で、具体的に何を優先すべきか(例えば、情報の共有、訓練、職員間の連携、保護者対応、事務作業など)を考えます。最終的には、優先度の高い課題に全力で取り組む方針です。 数字苦手への対策は? なお、投資対効果を考える際に自分は数字に苦手意識があるため、数字が苦手な人にも取り組みやすい方法があれば教えていただきたいと思います。

データ・アナリティクス入門

多様な視点から問題解決を探る喜び

問題解決の多様な切り口とは? 問題解決にはさまざまな切り口があることを学びました。あるお題に対して「これ一択」と思いがちですが、見方や角度を変えることで多くの切り口が存在することが分かりました。また、MECE(Mutually Exclusive, Collectively Exhaustive)を意識して要因分析を行うことの重要性も理解しました。これまでの業務でも要因分析を行う際、多くの漏れや重複があると感じていたため、この手法は非常に有益だと思います。 学生の満足度はどう測る? 具体例として、大学に入学してきた学生の質と卒業時の満足度を比較する際にMECEの原則を使えるかもしれないと考えました。大学での4年間、学生は学業やクラブ活動などを通じて多くの経験をします。これらの経験を漏れなくパターン化することで、従来とは異なる分析結果が得られるのではないかと思います。 学生の実態把握の重要性 多くの学生にヒヤリングを行い、どのような学生生活を送っているのか現状を把握したいと考えています。大学職員として普段接するのは、多くが優秀な学生か、その逆の学生に偏っている現状があります。その中間層の普通の学生たちの実態を把握することが、重要であると感じています。

クリティカルシンキング入門

タイトル:イシュー設定で議論が変わる!仕事の質向上法

イシュー設定の重要性とは? イシューを適切に設定することの大切さを学びました。演習において、イシューを意識せずに事例を見たときと、イシューを意識した場合では、自分の思考の方向性や幅に大きな違いがあることを実感しました。また、日々の経験を振り返ると、イシューを明確にしないディスカッションや会議が多く、議論が脱線してしまう(もしくは脱線させてしまうことが多い)と改めて感じました。一方で、イシューの設定を誤るとその後の解決策全てが間違ってしまうという恐れも感じました。 日々の業務にどう活かす? 今週学んだ内容は、日々の業務のあらゆる場面で活用できると感じます。全ての仕事、作業、会話には必ず目的が存在します。特に、新しい技術や手法を取り入れる際には、手段と目的を混同してしまう場面が見受けられるため、その抑止に大きな効果が期待できます。 目標達成に向けた習慣づくり 今後は、自分が取り組むことやチームとして成し遂げたい目標を常に問いかける習慣を身につけます。そのためには、業務の重要な場面でまず自分自身に問いかけ、イシューを明確化させることが必要です。イシューが明確になった後は、特に判断する場面や迷った際にはイシューに立ち返ることを徹底し、周囲にも共有します。

クリティカルシンキング入門

フィードバックが導く論理転換術

プレゼンは響いてる? 私は国内約2000名規模の自動車部品メーカーで、人事部のDX担当として働いています。経営層に人事施策をプレゼンする際、「論理的につながっていない」との指摘をいただくことが悩みの種です。経営層はほぼ全員がMBA取得者であるため、ハードルは高く、昨日も強烈なフィードバックを受けたことで、逃げたくなる気持ちが湧きました。しかし、今回学んだ内容を踏まえ、どこが経営層にとってNGポイントだったのかをしっかりと振り返ることで、次回からは問題から解決策(what→where→why→how)まで論理的に紡ぐストーリーを伝えられるようになりたいと考えています。 具体と抽象の行き来はどう? 学んだ内容の中で特に「具体と抽象の行き来」を強化したいと思います。普段から上長からも指摘される点であり、考えを複雑にしがちな自分にとって、今回の例のような「お金」「客」「建物」といった易しい表現に変換することを意識したいからです。また、学んだことを業務に生かすため、毎朝振り返り、その日の業務に少しずつでも活用していくつもりです。例えば、1日10回だけでも腹筋するというイメージで、ハードルを下げながら継続を重視し、I can do it!という自信も育てていきます。

戦略思考入門

狭い視野を超える差別化チャレンジ

顧客視点は十分? 差別化を考える際は、まず顧客の視点とその価値を深く理解することが大切です。その上で、その取り組みが持続可能であり、他社には真似できない希少性を持っているかを確認します。また、業界内に留まらず、他業種の視点も取り入れることで、より広い視野から検討することが可能となります。 狭い視野をどう変える? ワークを通じて、自分がこれまで考えていた視点が非常に狭い範囲に限定されていたことに気づかされました。そこで、3つのルールに基づき、自社や自分自身を客観的に見直すとともに、VRIOのフレームワークを活用して「差別化」について検討するトレーニングを実施したいと考えています。 新商品の差別化は? 普段、業務の中で意識してきた差別化の取り組みは少なかったものの、新商品のプログラム開発もまた一つの差別化と捉えることができます。まずは、フレームに沿って市場や顧客のニーズ、そして部署の強みを見直しながら検討し、他業種の事例を取り入れて新商品を企画してみたいと思います。希少性という視点には難しさもありますが、強みをしっかりと落とし込むことでその解決策が見えてくるはずです。これからは、自分一人でなく、部署のスタッフと共に取り組んでいきたいと考えています。

データ・アナリティクス入門

問題解決のカギは5W1H!経営改革の実践例

学習で得たポイントは? 今週の学習で得たポイントは以下の3点です。まず、①問題解決プロセスにおいては5W1Hの発想が重要です。しかし、解決手段の「How」から始めるのではなく、まずは「5W」に注目し、原因となる部分を特定します。②原因特定の際にはMECEな考え方を意識します。MECEを厳密に運用する必要はありませんが、「その他」の選択肢も含め、原因を絞り込むことが大切です。③「ありたき姿」と現実のギャップを定量的に捉え、それを解決手段である「How」に落とし込み、具体的なアクションにつなげます。 活動方針策定のヒント 来期の活動方針を策定する際には、経営目標と現状を数字で表し、「ありたき姿」と「現状」のギャップを可視化します。これにより課題となる分野を明確化し、それに関係する業務や部署を特定し、解決手段の立案に役立つと感じました。 ギャップ分析の重要性とは? 今期の経営目標と現在までの途中経過をデータで可視化し、それを業務や担当部署別に落とし込みます。そして、「ありたき姿」と「現状」のギャップが大きい部署を洗い出します。ギャップについて各部の担当者とディスカッションを行い、来期の目標設定において課題解決方法とその定量化を検討します。
AIコーチング導線バナー

「業務 × 例」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right