デザイン思考入門

予期せぬ挑戦で深まる学び

経営層とのズレは? 総務の分野では、明確なゴールや課題意識が設定された状態で業務が依頼されることが多く、経営層と現場の考え方のズレを常に意識しながら問題解決に取り組む重要性を感じました。経営側が示すのは課題定義までであるため、実際に試作品を作る過程で予期せぬ問題が発生することを体験し、学びが深まりました。 AIデザインはどう? 生成AIを活用してデザインを作成する試みは、予想以上に難しいと感じました。自分のイメージを正確に反映させるためには、プロンプトの使い方をさらに工夫していく必要があると感じています。また、思いもよらない結果が得られることもあり、試行回数を意識することが大切だと思いました。 試作の修正ポイントは? 加えて、生成AIの利用はもっと意識的な操作が求められる点、試作後に自ら修正箇所を見出す経験が得られる点、そしてデザイン思考入門で学んだ手法が、自分の予想を超える、または改善された成果を生み出す可能性があることを実感しました。

クリティカルシンキング入門

一貫性で見る提案の極意

経営解決策は何? ファストフード店の事例をもとに、答えを出すべき問い=イシューに対する経営目線の解決策を検討しました。途中、どの解決策を採用すべきか迷いが生じる場面もありましたが、多くの学びを得ることができたと感じています。また、解決策を考える過程で、他の回答とぶれてしまう部分があったため、一貫性を保つ重要性を再認識しました。 一貫性はどうする? 業務上、先方の採用計画に対して提案を行う際にも、一貫性の維持が非常に大切であると実感しています。改善策や今後の提案内容が矛盾しないよう、常に一貫した視点を持ち続ける必要があると感じています。 切り口はどう整理? 提案資料を作成する際には、まず提示された課題に対してどのような切り口があるかを整理し、各切り口に一貫性があるかを確認してから、実際の作業に取りかかるという手順を踏んでいます。こうしたプロセスを繰り返すことで、自然と一貫性のある多角的な提案ができるようになると確信しています。

データ・アナリティクス入門

仮説思考で切り拓く成長への道

仮説検証はどう進む? 問題解決に取り組むためには、複数の仮説を立て、それぞれを短いスパンで検証することが大切です。仮説設定の際には、3Cや4Pといったフレームワークを活用することで、より多角的かつ論理的にアプローチできると感じました。 固執をどう克服する? 私自身の業務では、課題に直面すると日々の経験に左右され、一つの可能性に固執してしまう傾向がありました。仮説はあくまで出発点であるため、複数の視点から検討する姿勢が重要だと学びました。今後は、対策を立案する前に一度立ち止まり、慎重に仮説を設定することで、論理の偏りや抜けを防ぎ、より精度の高い対策に結びつけたいと思います。 書き出す仮説の意義は? また、分析の材料となるデータ収集に先立ち、まずは課題に対する仮説を書き出すことが基本であると感じました。3Pや4Cのフレームワークを利用し、俯瞰的に課題を捉えることで、決めつけに陥らずに検証・結果のプロセスを慎重に実行する姿勢が大切だと再認識しました。

データ・アナリティクス入門

仮説とデータで切り拓く未来

データ分析で何を学ぶ? 今週は、データ分析による業務課題の可視化や、仮説構築から分解・深掘り、施策立案に至る一連の流れを体系的に学びました。全体平均だけでは見えないグループごとの傾向把握の重要性や、セグメント別分析を通じてボトルネックやインサイトを抽出するプロセスが特に印象に残りました。具体的なケーススタディを通して、満足度や成果指標を分解することで課題の本質に迫るアプローチを体験できたことは非常に有意義でした。 営業分析をどう活かす? また、今回学んだ分析プロセスや分解思考は、自身の業務、特に営業活動にも応用可能だと感じました。たとえば、営業メンバーの訪問件数や提案内容、業界別の成約率、失注理由などのデータを収集・分解し、チームや個人、顧客属性ごとに傾向を分析することで、属人的な営業から再現性の高いプロセス型営業への転換が期待できます。さらに、成績上位者の営業プロセスを可視化してナレッジを共有することで、組織全体のレベルアップに貢献できると考えています。

データ・アナリティクス入門

目的と仮説で切り拓く新世界

なぜ比較が大切? 今回の授業で改めて学んだのは、「分析は比較なり」という考え方と、目的や仮説を持って取り組む姿勢の重要性です。データ分析の根幹となるこの考え方は、今後の講義や業務の現場で常に意識して取り入れるべきだと感じました。 意見交換で何を得る? また、授業中にパソコンを購入する際の調査項目や、自身が望む条件について話し合った際、他の受講生の様々なアイデアが非常に参考になりました。この経験から、自分の考えに固執せず、複数の視点から意見交換を行うことのメリットを実感しました。 業務で分析のコツは? さらに、データ分析の考え方は業務においても広く応用できると考えています。例えば、ある業務プロセスにおいて不具合の解決を目的としてデータやプロセスを分析する際、目的や仮説を明確にすることが問題解決への近道になると感じています。 普段からデータ分析に携わっている方には、業務で分析を進める中で直面する課題や、その解決方法についてぜひお伺いしたいと思います。

リーダーシップ・キャリアビジョン入門

チーム輝かすエンパワメント力

権限移譲の秘訣は? エンパワメントでは、権限移譲とメンバーのやる気の維持を両面から考えることが大切だと改めて感じました。成果の向上とメンバーの育成を両立するために、各人の業務経験や知識、意欲、さらには時間的な余裕を十分に理解し、どこまで委譲するかを明確にする必要があると感じています。目標設定や計画の立案に際しては、6W1Hを具体的に示すことで、より実行可能なプランへと落とし込むことができると思います。 話しやすい雰囲気は? また、エンパワメントのプロセスを円滑に進めるためには、自分自身に余裕を持ち、相手にとって話しやすい雰囲気を整えることも重要です。目標や進捗の管理に関しては、理解が不十分な点や不安な部分があれば丁寧に説明し、それらの課題を引き出したうえで意義や目的を共有することが、結果として相手のモチベーションを高める効果があると考えています。毎週の1オン1ミーティングでこれらを確認する習慣も、エンパワメントを成功に導く一つの工夫だと思います。

クリティカルシンキング入門

忙しさの中で見つけた成長の種

なぜ振り返る必要がある? 6週間を振り返った結果、日々の業務に追われ、全てのことを実践するのは難しいと改めて実感しました。しかし、同じような状況にある他の受講者の姿を見て、まずは研修内容を忘れないように振り返り、まとめることに努めています。その後は、できることから一つずつ実践し、自分のものにしていこうと考えています。 管理職準備はどう進む? 4月から管理職に就くにあたり、まずは目の前の課題に直結する「3つの視」に取り組む予定です。自分の周囲だけではなく、客観的な自分自身や、自分がどの程度影響を与えられているか、またどのような人々に喜びを提供できるかを考えながら、日々の行動を見直していきます。 行動の見直しはどう? 毎日帰宅時には、その日の行動や思考を振り返り、「3つの視」を十分に活かせたかをチェックします。もし不足している部分があれば、その原因を自問し、客観的な自分と本能的な自分との間でバランスを取りながら、実践経験を積んでいく所存です。

データ・アナリティクス入門

データ分析で未来を描く方法

目的を明確にする重要性 目的を明確にすることは、分析作業の基本です。これまで私は、過去の経験に基づいたバイアスを持ちながら、取り組みやすい課題解決策から進める方法を取ってきました。しかし、バイアスを取り除き、基本に立ち返ることが重要だと感じます。分析では、比較や言語化が鍵となります。 数値化で課題を明確化 現状とあるべき姿とのギャップを分析し、比較することで、課題のレベルを数値化したいと考えています。業務レベルの改善や変革を推進するにあたっては、数値による判断材料の精度を高め、プロジェクト内での共通理解を促進し、推進の結果を最大限引き出したいです。 合意形成と重点課題の抽出 まずは、プロジェクトメンバーの間で目的を明確にし、合意形成を図ります。そのうえで、データの収集と加工を行い、比較分析により重点課題を抽出します。最後に、その分析結果を基にアクションプランを言語化し、業務レベルでアセスメントを実施して、体制、スケジュール、予算を計画します。

データ・アナリティクス入門

A/Bテストで成果を見える化!

真因はどこにある? プロセスを分解し、問題がどこにあるのか、さらにその真因を掘り下げるアプローチは非常に重要です。このような手法により、具体的な対策が見えてきます。特に、A/Bテストを用いた評価方法は、複数の施策を公平に比較するために有効です。ランダム性を持たせつつ、できるだけ条件を同じにして施策をリリースし、実際の結果を基に評価することが求められます。 課題はどう捉える? 実際の業務では、A/Bテストを行う機会は少ないかもしれませんが、顧客の課題をプロセスに分解し、その真因を探りながら仮説を立てることは、多くの場面で有効です。このような手法で、顧客の表層的な課題だけでなく、プロセスの詳細まで深く掘り下げることが大切です。 データは信頼できる? そのためのヒアリングやディスカバーを繰り返すことで、有意義なデータを収集し、場合によっては実地での業務サーベイを行うことも検討します。これにより、定量的なメリットの根拠を構築することが可能になります。

データ・アナリティクス入門

ロジックツリーで切り拓く未来

ロジックツリーは何故? ロジックツリーは、問題の本質を的確に把握するための有力な手法であると実感しています。事前にロジックツリーを用いて課題の所在を整理することで、複数ある課題のうち、どの部分に対して施策を講じるべきかが明確になり、もし施策に効果が見られなかった場合でも、別の課題に切り替えて対応できると感じています。 地域課題対策のカギは? 私の業務には地域課題へのコンサルティングも含まれるため、今後もこの手法を積極的に活用していきたいと考えています。現在、多くの地域が人口減少に悩まされており、その背景には出生率の低下や若者の流出など、複数の要因が複雑に絡み合っている状況です。 根本原因は何処? さらに、根本的な原因として、働く場所や遊ぶ場所が十分に確保されていない点、子育て支援の不十分さや若者の収入状況の厳しさも挙げられます。このような各要因をロジックツリーで分析し、具体的な施策を立案することが、効果的な対策の実施につながると感じています。

クリティカルシンキング入門

イシューで変わる会議の効率化

なぜ課題を明確に? イシューを明確にすることで、考えるべきことや取り組むべき事柄がはっきりと理解できることを再確認しました。最終的な目的が何であるかを認識し、現時点でその目的に対して何を決めなければならないのかを冷静に考えることが課題の明確化において重要です。 どうして会議で有効? 会議や意思決定、仕事の優先順位付け、業務内容の策定など、様々な場面でこのアプローチは有効です。特に会議では、イシューが忘れ去られがちなので、意識することで改善が期待できます。また、企画資料においても、本来の目的からズレないように意識して改善する必要があります。 どうして軌道修正が必要? 特に会議では、参加人数が増えることで話が広がり、議題が落ちてしまうことがしばしばあります。このため、初めに課題設定をしっかり行い、その後も必要に応じて軌道修正を行うことが重要です。企画資料においては、課題が複数挙がる場面では、論理構造を整理して話を展開するよう心掛けます。

データ・アナリティクス入門

核心に迫る、学びの一歩

問題の核心は何? 何が問題なのか、つまりWHATを特定することが最も重要です。最初にHOWから入る方法は、場合によってはうまくいくこともありますが、運の要素が大きく、適切なアプローチとは言えません。また、MECEの考え方もほどほどに取り入れ、さまざまな切り口を試みるものの、それに固執することで正しいアプローチを逃してしまう可能性があります。 数字はどう分析? 新規の店舗出店における収支計画書(PL)の作成とレビューでは、数字に基づいた具体的なギャップを把握しやすいという利点があります。さらに、他の業務においても、最初にHOWから入ってしまう傾向があるため、まずは問題そのもの、つまりWHATを追求する姿勢が求められます。 方法論の先行は? 以前受講したクリティカルシンキングの講座で、何よりもまず「何が問題か」を意識することの重要性を学びました。しかし実際に研修課題に取り組む際、いまだに「どうすれば」という方法論が先行してしまうのが現状です。

「業務 × 課題」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right