データ・アナリティクス入門

仮説と対話で生む新発見

仮説検証の工夫は? 仮説を立て、データで検証するプロセスは従来通り行っていますが、決め打ちにしない姿勢には驚きを覚えました。説得力を高めるために、反論を排除する情報に踏み込むことが重要であり、3Cや4Pなどの視点で網羅性を持たせる思考法も、仮説が浮かばないときには非常に有用だと感じました。 忙しさの中で何を考える? 忙しい状況下では、決め打ちの仮説からデータを作成し、仮説が合っているという安心感にとらわれがちです。しかし、まずは仕事にゆとりを持ち、反論が出ないまで情報を網羅的に検討することが大切だと改めて実感しました。 共に歩む協働は? また、データの加工作業を一人で行っていると手が回らなくなることが多いため、今後はチームで協働することを意識していきたいと思います。裁量権を活かしつつ、新年度からは担当部署の変更を検討し、より良い組織作りを目指していきたいです。

データ・アナリティクス入門

多角的視点で広がる戦略の可能性

多角的視点は有効か? フレームワークの各視点を取り入れることで、仮説の幅を広げることができるとの示唆が非常に印象に残りました。たとえば、問題解決の4つのステップや、事業戦略の分析で利用される3C、サービス検討の4Pといった多角的視点を活用することで、より網羅的な分析が可能になります。 仮説の見直しは必要? 一方で、これまでキャンペーンの仮説を立てる際には、十分な視点を持たずに取り組んでいた自分に気付かされました。今後は、複数のフレームワークを意識的に取り入れ、仮説同士に網羅性を持たせることを心がけたいと思います。 継続検証で進化できる? また、複数の仮説を立て、継続的に検証を繰り返すことで、ABテストにおいて有意な差を見出せると期待しています。自分が企画するキャンペーンの成功に向けて、どのフレームワークが活用できるかを検討することが、今後の課題となるでしょう。

データ・アナリティクス入門

比較で解く原因の奥義

原因をどのように特定? 問題の原因を特定するためには、まずプロセスに分解し、そのプロセスごとに原因であるという仮説を立て検証する必要があると学びました。特に、条件を同じにして比較対象の要素をひとつだけ変更するA/Bテストの手法は、原因検証に非常に有効であると理解しました。この「分析とは比較である」という本学習の原則は、派生していっても常にその根本に忠実でなければならないと感じました。 多角的な検証の鍵は? また、問題の原因を直感で捉えるのではなく、What、Where、Why、Howの4つのステップで明確に切り分けることで、決め打ちにせず多角的な検討が可能になると実感しました。これにより、他者への仮説説明もしやすくなると同時に、A/Bテストを実施する際にもどの要素を置き換えるかを明確にしてトライアンドエラーのプロセスを進めることができ、より納得のいく検証が行えると感じました。

データ・アナリティクス入門

5視点で探る仮説と分析の力

分析はどう始まる? 分析は比較から始まるという考え方と、問い・仮説設定・検証というサイクルが実務に合致する点に強く共感しました。また、インパクト、ギャップ、トレンド、ばらつき、パターンの5つの視点をすべて捉えることで、初めて価値ある情報が得られるという認識が深まりました。 変化と課題は何? 先週と大きなテーマの変化はなく、内容自体も大きく変わりませんが、5つの視点を活かし、業務でのアウトプットが比較によって生み出される価値に繋がると考えています。一方で、分析を活用する際の課題として、仮説検証のサイクルの速さや仮説の精度が挙げられます。特に、データ分析の初動を誤らないことが、仮説の精度を高める上で重要だと感じました。 仮説の壁をどう乗る? また、「仮説を立てることが難しい」との声をよく耳にします。皆さまはどのような方法で仮説を構築されているのか、ぜひ知りたいと思います。

データ・アナリティクス入門

洞察が導く実践の軌跡

ABテストの注意点は? ABテストは、広告制作や新商品のパッケージ調査など、クリエイティブの評価でよく用いられる手法です。実際の業務で使用していたためなじみがありましたが、条件を揃える部分で見落としがちな点があるため、実践時は特に注意しなければならないと感じました。 打ち手比較の意義は? また、打ち手の比較に関しては、単なるデータ分析にとどまらず、業務上の課題解決のための思考パターンとしても応用可能だと実感しました。物事の意思決定における「比較」は、非常に重要なプロセスであると改めて認識しました。 課題継続検証は? 業務では常に課題が発生するため、まず現状を把握し、比較のためのデータを精査しながら継続して検証することが重要だと考えます。さらに、プロセスを細分化して仮説を立て、実際に試していくというルーティンを、どの状況においても意識して取り組んでいきたいと思います。

アカウンティング入門

B/Sで読み解く企業の健康診断

B/Sとは何を示す? B/Sについて初めて学んだことで、B/Sが会社のお金の使途や調達方法を示し、つまり会社の健康状態を把握するための指標であると理解できました。以前学んだP/Lが会社の成績表だとすれば、B/Sはその健康状態を映し出すものと整理できます。 左右の記載に何の意味? また、B/Sでは左側に資産、右側に負債と純資産が記載され、両者の合計が等しくなる仕組みになっています。流動負債は1年以内で返済が必要なものを、固定負債は1年を超える返済義務があるものを指す点も学びました。 自社B/Sはどう活かす? 私自身、B/Sの活用方法についてはまだ十分に理解できていませんが、まずは自社のB/Sを確認し、自分の関わる業務がどの部分にどの程度影響を与えているのかを読み解いてみようと思います。その上で、他社のB/Sとも比較しながら、自身の業務の妥当性を検証していくつもりです。

データ・アナリティクス入門

数字から見える学びの世界

データの傾向は見えますか? データはビジュアル化することで多くのことが見えてくると感じています。そこで、まずは業務の件数や週平均、月平均などの数値を確認し、どのような傾向があるのか把握することから始めたいと思います。 年次データのばらつきは? 次に、年単位でのデータをヒストグラムに落とし込み、ばらつきや偏りがあるのかを検証してみたいです。年代ごとの偏りから、ある種のマーケティング施策が影響しているのではという仮説を立てることができ、実践演習で学んだ知識が非常に役立ちました。 平均値の使い分けは? また、単純平均だけでなく、加重平均や幾何平均など、状況に応じた平均値の使い分けが正しい分析につながるということを再認識しました。さらに、数字のばらつきを評価するために、標準偏差のような指標を実際の業務データで算出し、その計算方法や数字の感覚を磨いていきたいと考えています。

データ・アナリティクス入門

仮説力が拓く学びの世界

仮説の基本って何? 「仮説」とは、ある論点に対する仮の答えであるという基本から学びました。目的に沿った仮説を立て、必要に応じて複数の仮説を検討することで、網羅性を持たせる手法が重要だと実感しました。 分類で何が見える? また、仮説は目的に応じて「結論の仮説」と「問題解決の仮説」に分類できるという点に注目しています。こうした考え方を取り入れることで、仕事の検証マインドが向上し、説得力も増すことを感じました。さらに、ビジネスのスピードや行動の精度を上げる効果にも期待が持てます。 戦略にどう活かす? 実際に、分析したデータをもとに売上傾向や市場トレンドを踏まえた仮説を立てることで、戦略を具体的に策定できる点に意義を感じています。複数の視点から仮説を立てることで、より多角的な分析が可能になるため、さまざまな場面で仮説の精度を向上させる取り組みが非常に有効だと考えています。

データ・アナリティクス入門

比較で見つける学びのヒント

比較はなぜ大切? 分析において、比較が本質であることを再認識しました。何かと比較することで評価が可能になり、比較しなければ正確な評価は得られないと実感しました。 同条件比較って? また、評価の際には同一条件、すなわち「Apple to Apple」の比較を意識する重要性も感じました。分析の第一歩は仮説の立案から始まり、その仮説を検証するために、何と何を比較すべきかを明確にする点が印象的でした。 業務分析の極意は? 日々の業務では、自分自身のデータ分析はもちろん、他のメンバーや関係者が行った分析も、このプログラムで学んだ体系化された論点を用いて見極め、改善点を具体的に指摘できるよう努めたいと思います。 爆撃機から学ぶ? さらに、学習事例として紹介された爆撃機の事例は、一見とらえにくい対象にどのように着目し、考察を展開するかについて大変興味深く感じました。

データ・アナリティクス入門

フレームワークで未来を拓く

3C・4Pの活用法は? 3C・4Pなどのフレームワークを活用して仮説を立てる重要性を改めて実感しました。なんとなく思いついた仮説では、他に考えられる可能性を見逃してしまう恐れがあります。一方で、フレームワークを用いることで、仮説の検証に必要な分析も効率よく進められるようになりました。 株式事務の仮説立案は? また、株式関連の事務においては、過去の経験や従来の分析結果に捉われず、さまざまな視点から仮説を立て、検証していくことが大切だと感じています。そのため、3C・4Pを活用し、複数の仮説を意識しながら業務に取り組むよう努めています。 実務検証の流れは? さらに、実際の業務では4P・3Cのフレームワークを使って分析を行い、課題に対して複数の仮説を出すことを徹底しています。そして、仮説の検証に必要なデータの抽出や分析も合わせて行うことを意識して作業を進めています。

データ・アナリティクス入門

現場の知見!多角的視点で切り拓く未来

分析の始まりは何? データ分析は、基本的に各要素の比較から始まります。分析を行う前に目的をはっきりさせ、まず仮説を立てた上で必要なデータを収集することが重要です。一つの考えに固執するのではなく、複数の視点から検証し、さまざまな可能性を考慮することが求められます。 フレームワークは役立つ? これまで学んだフレームワークを実務に応用し、再度データ分析に取り組むことで、現状の問題点や改善策が明確になります。たとえば、株式データや取引先データを活用し、視覚化することで、より説得力のある分析と問題解決が可能となります。 必要なデータは何? また、何が問題であり何を解決すべきかという目的を常に見失わないようにすることが大切です。さらに、どのような意思決定を行うために、どんなデータが必要かを明確に考え、取得できるデータをなるべく多く把握する姿勢が求められます。

データ・アナリティクス入門

問題解決と最適化に役立つ具体的手法を学ぶ

問題解決の順序がカギ? 問題解決のプロセスについて、「What、Where、Why、How」の順に進めることの重要性を再確認しました。問題理解と適切な対策を講じるためには、なぜなぜ分析を行い、真の原因を見つけ出すことが不可欠です。このプロセスは、提案時の逸注分析やプロジェクトのトラブル、営業活動におけるクレーム対応などの場面で活用できます。 A/BテストでCROを最適化するには? また、A/BテストがWebマーケティングにおけるCRO(コンバージョン率最適化)の手法の一つとして有効であることを学びました。この手法は事業プランの策定時にも有効です。具体的には、異なる案を用意して比較し、優れた点を組み合わせてブラッシュアップしていく方法です。マーケットプランにおいても、自社案と協業先の案を出し合い、検証や補完を行うことで、より確実なプランを作成することができます。

「検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right