データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。

クリティカルシンキング入門

立ち止まり、疑問を力に変える

どう深堀りすべき? 分解のプロセスでは、目に見える事実だけに当てはまらず、常に疑問を持って深堀りすることが、課題の本質を把握する上で非常に重要であると理解しました。実際の業務ではスピードが求められるため、予想通りのデータが出ると次のステップへと急ぎがちですが、一度立ち止まって、より深く検証する姿勢を大切にしていきたいと思います。 真実をどう捉える? また、品質不具合や設備のトラブルにおける再発防止の取り組みにこの分析を活用しています。結論ありきの報告が多く、グラフの見方などを深く疑っていなかった点に気付きました。今後は、別の切り口から事象を捉えることで、これまで見過ごしていた現実を明らかにできないかという問いを持つように努めたいと考えています。 原因究明の本質は? 過去の経験から、品質不具合や設備トラブルの原因を掘り下げることで、根本原因が共通しているケースが多いと感じています。特に、ある地域では、事象の特定は得意である一方、原因究明が軽視されがちな傾向があるため、日々の業務の中でさらに踏み込んだ分析を実践し、原因究明の体質を根付かせたいと再認識しました。

データ・アナリティクス入門

データ分析の方法で成果が変わる理由

データ分析の仮説作りとは? 仮説を立てたうえでデータを収集し分析しなければ、分析結果を施策につなげることはできません。3C分析や4Pの視点を取り入れることで、仮説の軸を整え、仮説の幅を広げることが可能です。仮説をもとにどのデータを分析するかを検討しますが、データは「すでにあるもの」と「新たに取得するもの」に大別されます。 アクセスデータをどう活用する? 例えば、WEBのアクセスデータなどは、以前はあまり意識することなく仮説に基づいてデータを考慮するという手順で分析していました。しかし、分析に重きを置きすぎると、仮説の軸や幅について十分に考えることができません。まずは仮説を立てることに重点を置いて分析を進めたいと思います。 思考の幅を広げるには? アクセスデータを見る際には、仮説を検証する意識で分析を進めます。SNSやWEB広告の各指標も多くが既に用意されているため、つい既存のデータだけで考えがちですが、その結果として「良かった」「悪かった」という結論に終わりがちです。施策を行う前に仮説を立て、その仮説に対する結果という視点で分析・報告を行いたいと思います。

データ・アナリティクス入門

平均だけじゃないデータの真実

データ比較は何が目的? データ分析において、比較は重要な手法です。たとえば、単純平均は代表的な指標ですが、これだけでは散らばりの情報が反映されず、重要なデータが見逃される危険性があります。そこで、標準偏差や中央値など、状況に応じたさまざまな指標を併用することで、より正確な分析が可能となります。また、グラフ化することにより、傾向を把握しやすくなり、新たな仮説を立てやすくなるという利点もあります。 サイト指標をどう考える? Webサイトにおける各種指標の検討でも、従来の単純平均だけでなく、データのばらつきを反映させる標準偏差の計算や、グラフを用いたビジュアル化が重要であると考えられます。こうした手法によって、これまで気付かなかった仮説を発見する可能性が広がります。 仮説検証はどう進む? 現在実施しているWebサイトのデータ分析についても、今回学んだ各種指標を活用し、改めて平均値の計算やヒストグラムによる可視化を行います。その上で、従来の仮説が成立しているかどうか、また新たな仮説が導き出されるかを検討し、反復的な検証により、より多角的な分析を進めていく予定です。

データ・アナリティクス入門

仮説が導く学びの扉

仮説の役割って何? 「仮説」を立てる重要性を再認識しました。特に、3C(顧客・競合・自社)や4P(製品・価格・場所・プロモーション)といったフレームワークは、網羅的な仮説形成に有効であると実感しています。これまではあまり意識せずに活用してこなかったため、今後は欠かさず取り入れていこうと考えています。 従来方法の問題点はどう? 従来は、実績ベースで特徴や傾向を把握し、その後に仮説を立てる方法で業務を進めていました。しかし、その方法だと仮説が固定的になり、複数のパターンを検討できなかったり、現状にないデータへの仮説が立てられなかったりするというデメリットを改めて感じました。 新たな仮説の進め方は? そこで、今後はデータを見る前に課題に対して仮説を書き出すことから始めます。その際、3Pや4Cといったフレームワークを利用し、生成AIなども活用して個人のバイアスを抑えるよう努めます。検証段階では「WHERE」「WHY」「HOW」といった観点から複数パターンの仮説を立て、それらをデータとして記録し、「仮説→検証→結果」というプロセスを確実に回していきたいと思います。

マーケティング入門

顧客の本音を見抜く仮説検証の道

本当に魅力は伝わる? 「商品の魅力を伝えるポイントを理解する」では、差別化の罠について学びました。顧客のニーズに合った商品や、似たような新商品の検討は、自社では取り組んでいるものの十分にやり切れていないと感じます。むしろシーズ(種となるアイデア)の発信を中心としたコンセプト提案に偏っており、本当にお客様が求めているニーズを捉えきれているのか疑問が残ります。 非自動車の仮説は? また、自動車業界の仕事とは異なり、非自動車分野では車両開発のロードマップが存在しないため、自発的に仮説を立てながら商品企画や顧客想定、そしてターゲットとなる顧客へのインタビューを通じた仮説検証が必要だと考えます。これまでの方法と異なるプロセスを踏む中で、真のニーズを確実に掴み取りたいと思います。 顧客の声は正確? さらに、顧客ごとに異なるニーズに対しては、仮説の構築とインタビューによる検証を繰り返し、苦手とするニーズキャッチを改善しながら新規事業化を目指していきたいと考えています。どの程度のニーズキャッチが事業化に寄与するのか、経験則をもとに情報を集め、検証を進めていく所存です。

クリティカルシンキング入門

データを巧みに操る分析の旅

数字の裏に隠れた答えは? 数字の羅列にしか見えないデータでも、多角的に分解し整理することで新たな情報が得られることに気づきました。具体的には、WhenやWho、Howといったカテゴリごとにデータを洗い出し、グラフを用いて数字の変動を追ったり、最大・最小の数値や割合を比較することで、多くの学びがありました。私は特にグラフ化や関数に対して苦手意識を持っていたため、これらを克服してデータ分析の手法を身につけたいと強く感じました。 具体例で何が見える? これらの手法は、主に以下のような場面で役立つと考えています。例えば、産休・育休のデータでは、自部署だけでなく全社や日本社会全体の傾向も分析でき、マネージャー育成では、試験結果を単なる合格・不合格の線引きではなく、点数ごとの分布に注目して分析が可能です。 どう伝えれば安心する? また、上司に資料を提出する際には、以下の行動を心がけていきたいと思います。まずアウトプットのイメージを具体化し、それに必要な情報を集めます。そして、仮説を立ててそれを検証できる視点で分析し、提案先の社員目線にあったアウトプットを整えます。

データ・アナリティクス入門

異なる視点で学ぶビジネス洞察力

どんな発見があった? 演習を通じて、様々な背景や経験を持つ人々が異なる視点でアイデアを出し合う面白さを感じました。今回の学習では、いくつかの前提や仮説があらかじめ定義されていましたが、実際のビジネスの現場では、表面的な事象(例えば売上げの減少)に対して、どのような前提を確認し、どのような仮説を立てるのか、さらにそれをどのように検証していくのかが重要です。この試行の回数も含めたプロセスが必要だと感じました。 現状分析はどう考える? 自社のビジネス分析全般に応用できるフレームワークだと思います。特定のサービスやアドオンの売上げ増減の理由を分析し、その再現性を確認して次の施策立案に繋げる振る舞いは、特に営業系の領域では常に求められています。 カウンター施策は何か? たとえば、前四半期ではある製品の低価格版の失注率が高かったとします。それに対して、他社がSMB向けに競争力のあるキャンペーンを実施していたことが判明し、それに応じたカウンター施策やカウンタートークの検討が必要となるように、課題の発見から分析・施策立案のサイクルを意識的に回してみることが大切です。

データ・アナリティクス入門

仮説の立て方で差がつくビジネス成果

データ比較はどう捉える? データは比較によってその価値が際立ちます。「何と比較するか」が特に重要です。仮説を立てる際には、フレームワークを活用し、網羅性を確保することが肝心です。また、仮説を切り捨てる際には、なんとなくではなく、はっきりとした理由を持って切り捨てることが必要です。 商品の見直しはどう? 売上が低迷している商品のリニューアル方針を考える際には、自社および他社の新商品や売上が好調な商品、不振な商品の販売動向や購買者の分析が求められます。特に間接競合においては、「何と比較するか」の経験的な蓄積があまりないため、これは大いに活用できる視点です。新商品のコンセプト評価が芳しくない場合には、方向転換も検討すべきです。 仮説検証の鍵は? 仮説を立てるプロセスでは、前提を疑い、フレームワークの活用や他部署からの意見を取り入れることで、網羅性を持たせることが重要です。仮説を検証する際には、比較対象を慎重に選ぶ必要があります。また、仮説を絞り込む段階では、切り捨ててよい理由を明確にしておくことが、今後同様の案件が発生した際にも活用可能な知見となります。

データ・アナリティクス入門

データ分析の新しい一歩を踏み出す

データ分析の基本とは? データ分析とは、単なる集計ではなく、比較を通じて意味を引き出すことです。具体的には、有意義なデータを比較し、仮説を立て、その仮説を検証するために、比較対象以外の条件を可能な限り一定に保ちながらABテストを実施することが求められます。 エンゲージメントを高めるためには? データ分析においては、適切な情報を選別することが重要です。例えば、SNSコンテンツのオーガニックポストのエンゲージメントデータを見ることで、どの国でどのようなコンテンツが注目されているかを理解することができます。その上で、さらに具体的に、投稿の時間帯やフレーズ、サムネの違いに焦点を当てたテストを行うことで、より効果の高い手法を見つけることが可能となります。 データの傾向を見極めるには? したがって、データの比較を深め、傾向を分析することに時間と労力を割く価値があります。決まった時間にインサイトをモニタリングし、データの傾向を知る時間を計画的に設けることが大切です。これにより、仮説を立て、有意義な投稿テストを実施することで、より深い知見を得られるでしょう。

データ・アナリティクス入門

仮説検証が開く未来への扉

原因究明の方法は? 問題の原因を探る場合、詳細に分けて確認しボトルネックを明確にすることで、問題の把握が容易になると感じました。 A/Bテストって有効? また、A/Bテストの概要とその活用方法について学ぶ中で、短期間で仮説の検証と効果測定が可能であること、さらに実際にある国の大統領選挙でも用いられていた実例から、有用性の高さを実感しました。 顧客接点をどう増やす? 担当顧客をセグメントに分け、各セグメントごとにデジタルを活用して顧客とコミュニケーションの機会を生み出す取り組みも印象的でした。例えば、メルマガ配信では、メールのタイトルや構成が開封率やクリック率にどう影響するかを比較する際に、A/Bテストが効果的に活用できそうだと感じました。 テスト後の活かし方は? 実際にA/Bテストを行う際は、1要素ずつ変更し、同一期間でのテスト実施により正確な効果測定ができるよう学んだ内容を参考に実践しています。実施後は、単にテストを終えるのではなく、振り返りの分析をしっかり行い、その結果を次回のテストに活かすことで、継続的な改善につなげています。

アカウンティング入門

数字の裏に隠れた経営のヒント

損益計算書の見え方は? 損益計算書の勉強にあたって、当初はもっと難解な内容を想像していました。しかし、実際には「儲けるための方法」を軸にした話であり、そのツールとして損益計算書が活用されているという点に新たな発見がありました。同一のカフェという商売でも、売上高は大きく異なる一方で最終的な利益がほとんど変わらないケースがあることが紹介され、なぜ売上高に差が生じるのかという背景のストーリーを通して理解することができました。これまで損益計算書だけで全てを把握しようとしていた自分に対し、数字の背後にあるビジネス全体の流れを考えることの重要性を改めて実感しました。 お客様はどう調査する? 今後は、まず自分が担当しているお客様の損益計算書を実際に確認し、直近のシステムの不具合で発生した仕訳がどこに影響を与えているのかを検証していきたいと考えています。これにより、お客様のビジネスをより深く理解し、次回の営業訪問時に有意義な話題を提供できることを目標としています。さらに、自身が属する業界全体の動向を把握するため、同業他社の損益計算書にも目を通して知見を広げる予定です。
AIコーチング導線バナー

「検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right