データ・アナリティクス入門

分解思考で見える未来への一歩

授業の何が良かった? ライブ授業でこれまで学んだことのおさらいができた点は、とても良かったと感じています。講義の中で、データ分析は比較が基本であること、また分析の前には明確な目的と仮説が重要であると改めて認識しました。 問題解決の視点は? さらに、問題解決には「what」「where」「why」「how」の視点が有効であると学び、特に「what」と「where」の感度を高めるために、分解の切り口を増やす活動に取り組む意欲が湧きました。 動画と集客はどう? また、動画クリエイティブの課題については、演者、媒体、長さなどの各要素に分解して問題点を特定し、数値の改善を目指す方法論が印象に残りました。同様に、集客キャンペーンの改善に関しても、何が悪かったのかを明確にすることで、次回実施への具体的な提案に繋げることの重要性を感じました。 分解は何を示す? とにかく、問題を分解して考える姿勢が大切だと実感しています。データを集めた後は、グラフなどを用いて視覚化することで理解を深め、施策実施後には常に仮説との比較を行って、正しかった点や改善すべき点を明確にしていきたいと思います。

クリティカルシンキング入門

論理と客観で未来を切り拓く

考えは整理された? 論理的に考えるために、まずは具体的な作業内容が明確になったと感じています。自分の考えが偏っていることを認識し、客観的に見るもう一人の自分を育てること、そして考えを可視化し項目化してMECEの視点を意識すること、さらに具体と抽象を行き来することの重要性を実感しました。 プロジェクトの計画は? ① プロジェクトを進めるにあたっては、まずゴールをしっかり設定し、その達成に向けた計画を立てる必要があると感じました。自分の意見や考えを基に、どのように進めるべきかを整理し、進捗状況に応じて調整しながら計画的に進めることが求められます。 疑いは成長の鍵? ② また、業務におけるスキル面の課題整理や行動計画の作成・実行においても、書き出すことで三つの視点やMECEの観点を整理できる点が大いに役立ちました。時間をかけて考えるより、まずは先に進めながらも、立ち止まって整理し自分の出した答えに疑いを持つことで、現状を俯瞰的に捉える訓練となりました。 今後の進め方は? 以上の学びを通して、今後も論理的な思考を大切にし、より効果的に業務を進めていきたいと考えています。

デザイン思考入門

弱点克服!チームで未来を拓く

授業内容をどう感じた? 講義のビデオを視聴し、発表を楽しませていただきました。出席され発表された皆様に感謝申し上げます。講義の最後に、自身の得意分野と不得意分野について振り返る時間があり、デザイン思考のプロセス全体を把握する中で、全てを自分一人で担う必要はなく、得意な部分はチームで補完する方法もあると改めて気づかされました。 発想と共感はどう? 営業としては、私は発想力に長けており、顧客のニーズに応じた様々な提案を考える点が得意だと感じています。しかし、共感や課題定義においてはまだ改善の余地があると感じ、顧客のニーズを十分に引き出すことが課題であると認識しました。今回のデザイン思考の学びを通して、自分の弱点を補うヒントがたくさん得られたと感じています。 面談の工夫は何がある? 今後は特に、共感や課題定義のスキルを強化していきたいと思います。顧客訪問の際、事前にヒアリング項目を整理するだけでなく、面談中にも気づきを得られるよう心構えを工夫していく所存です。また、面談後には得た情報を基に課題定義のプロセスを振り返る機会を設け、さらなるスキルアップに努めたいと考えています。

クリティカルシンキング入門

思考を可視化して得る新発見

どうやって問いを共有? 今取り組むべき課題に常に焦点を当て、その問いを周囲と共有し共通認識を持つことが重要です。このため、問いを可視化し、自分の思考に偏りがないかをメタ認知することが求められます。知識のインプット、アウトプット、他者からのフィードバック、そして振り返りを絶え間なく繰り返し、継続していくことが不可欠です。 どんな文章構成? これらの考え方は、文章作成やチーム内での発表、プロジェクトの企画・提案などの場面で活用できます。具体的には、すぐに文章を書き始めるのではなく、まず文章構成を考え、ターゲットとなる読者像に応じた伝え方を工夫します。また、ロジックツリーを利用して思考を明確にし、チームで共有する際には具体的な言葉を使って誤解が生じないようにします。さらに、目的に沿ったデータを選び、その使用意図を常に考慮します。 思考はどう見極め? 日常業務においてこれらのアプローチを心に留め、上質な情報のインプットとアウトプットを心がけ、周囲からのフィードバックを依頼します。思考が偏ることを防ぐため、仕事以外でも常に思考の過程を可視化し、メタ認知を実践することが大切です。

クリティカルシンキング入門

問いが拓く本質解決への道

問いの立て方は? 今回の学習テーマは、私がこの講座で最も学びたかった内容そのものです。ビジネスにおいて課題を解決するためには、まず何をすべきかを明確にし、的確な施策を打つことが大切です。そのためにはまず「問い(イシュー)」を立て、その問いから目をそらさずに取り組むことが重要だと学びました。また、同僚や周囲の人とその問いを共有し、一緒に課題解決に向けて考える姿勢も必要です。 分析結果は何を示す? 私の業務では、アンケートデータやヒヤリハットデータの分析、そして事故防止策の策定を行うことが求められています。データ分析を終えた後に、「では何が課題か」「何をすべきか」を考えるフェーズに必ず差し掛かります。これまでの経験では、分析結果をもとに比較的実践しやすい案を出していましたが、本質的な解決には繋がらないプランに終始してしまっていました。 実現できる解決策は? 今回の学びを通して、まず本質的な課題解決のための問いを立てることの重要性を再認識しました。そして、その問いに対して実現可能な施策を考えるプロセスにシフトすることで、より根本的な問題解決が図れると確信しています。

クリティカルシンキング入門

数字が語る真実と見えない可能性

数字分解で何が見える? 数字を分解することで、今まで見えなかったものが見えてくることに改めて感動しました。しかし、正しくデータを分析するためには、多くの項目を分解することが重要です。たとえ何も見えなかったとしても、それ自体が「見えなかった」という情報を得られる点が印象に残りました。 グラフで何が見える? また、数字をグラフなどで可視化することで、視覚的に理解できることの重要性を再認識しました。 業務分析の深さは? 私は現在、業務の取り組み状況を分析し、弱点を教育する部門に所属しています。分解できる数字は限られていますが、その中で複合的に分解を繰り返し、表面的な分析にとどまらないよう心掛けています。これにより、真の課題を明らかにし、教育の内容や方針を考察できます。 教育方針の決め方は? 2025年度の教育方針を考えるにあたって、まずは12月までに大枠を検討します。さらに、詳細な教育方針や内容については、対象層に分けてチーム内でよく検討し、1月中旬までに考えます。その後、上司の意見を取り入れてブラッシュアップし、最終的には3月初めに発信できるよう進めていきます。

クリティカルシンキング入門

現状を突き詰めるイシューの力

何に注目する? イシュー、すなわち今直面している課題を明確にする方法は、さまざまな場面で活用できると感じました。会議の場面や日常の問題に対して、まず何にフォーカスすべきか立ち止まって考えることの大切さを再認識しました。また、ビジネスの現場では問題を引き起こす要因が複数考えられますが、その中でどこに手を打つべきかを組織内で確認し、共通の認識を持つことで、問題解決力が向上するのではないかと思います。 現状分析で何が見える? 現状の環境を正確に分析し、そこからイシューを導き出して、皆で共有することが何より重要だと認識しました。 組織見直しはどう? 私が所属する部署では、ある部分に手当てをすれば別の部分に歪みが生じるという調整が必要な状況が見受けられます。今後は、量よりも品質に焦点をあてる環境にあり、まさに思考や業務の転換期にあると感じます。目指すべきゴールや我々の役割を日々実践として語り続ける一方で、今本当に解決すべき課題は何かをもう一度しっかりと見つめ直す必要があると考えます。将来的な姿を踏まえ、現状の組織体制や目的、あるべき姿の見直しを行うことが適切だと思います。

データ・アナリティクス入門

仮説で切り拓く未来戦略

仮説をどう整理する? 今回の講義では、複数の仮説を立て、その網羅性に注目する視点が非常に印象的でした。これまで仮説検証に取り組む際、十分に意識していなかった点も改めて考える良いきっかけとなりました。特に、結論を導くための仮説と問題解決に向けた仮説を、過去・現在・将来の軸で整理して考える手法は、新たな学びとして大変有意義でした。また、仮説を証明するために必要なデータの収集方法や、データを加工する際の視点についても、今後さらに知識を深めるべきと感じました。 データで何を探る? さらに、Google Analytics以外の情報源、例えば売上データや顧客データ、購買データなどから顧客の傾向や購買パターンを把握し、適切な施策へと結びつける重要性を再認識しました。仮説検討時には3Cや4Pの視点を意識し、より具体的な改善策に取り組んでいきたいと考えています。担当クライアントのデータを活用しながら、どの組み合わせの商品が選ばれるのか、また一回あたりの購入金額をいかに向上させるかなど、具体的な戦略を検討し、常に新たな課題や仮説に向き合う姿勢を持ち続けることが大切だと実感しました。

クリティカルシンキング入門

はじめに明確なイシューを掲げよう

イシュー設定は必要? イシューを設定することの重要性を改めて学びました。これまで、直感に頼って課題を選んでしまったり、考えているうちに課題がずれてしまうことが多かったのですが、今回の演習で、課題がぶれてしまうと正しい回答にたどり着けないことを実感しました。そのため、最初に定めたイシューを言語化して書き留め、ぶれずに考えを進めることの大切さを感じています。 企画前の現状把握は? 新たな施策を企画する際は、まず現状を正しく分析し、イシューを明確に特定することが必要だと認識しました。現状分析の段階でイシューを曖昧なままアイデアを練るのではなく、しっかりと明文化することを徹底していきたいと思います。また、会議などで話が脱線する場面においても、最初に共通の認識を持ってから対話を始めることで、議論がうまく進むと感じました。 実践の基本は? これまでの経験を踏まえ、今後は以下の2点を実践していきます。まず、物事を考える際には最初にイシューを設定し、それに沿ってぶれずに思考を進めること。次に、情報収集の段階と課題を特定する段階を分けて考え、整理しながら進めることを徹底します。

リーダーシップ・キャリアビジョン入門

信頼と腹落ちが生む成長の物語

伝わりはどう感じる? 目標や指示内容が伝わっているかには注意してきたものの、相手が本当に腹落ちしているかという点はあまり意識していなかったと感じています。エンパワメントを進める上で、相手の腹落ち具合は非常に重要ですが、実作業の確認とは異なり、言葉だけではその度合いを把握できません。そのため、信頼関係の構築が不可欠であると認識しています。 信頼はどう築かれる? プレイングマネージャの頃からのメンバーとは、既に十分な信頼関係があり、腹落ちの点も含めたエンパワメント型の指示が自然とできていると実感しています。一方で、管理職になってから関わるメンバーに対しては、まず信頼関係の度合いを確認しながら、1on1などを通じて実務以外の側面からパワーの源泉を見出し、信頼を築いていく必要があると考えています。 間接の信頼は成立する? 直轄のメンバーについては日常的に顔が見えるため、エンパワメントがしっかり活用できています。しかし、直属のリーダーを経由してしか話をしない間接的なメンバーの場合、どのようにして信頼を築いていくべきか、今後の課題として検討する必要があると感じています。

クリティカルシンキング入門

立ち止まり、疑問を力に変える

どう深堀りすべき? 分解のプロセスでは、目に見える事実だけに当てはまらず、常に疑問を持って深堀りすることが、課題の本質を把握する上で非常に重要であると理解しました。実際の業務ではスピードが求められるため、予想通りのデータが出ると次のステップへと急ぎがちですが、一度立ち止まって、より深く検証する姿勢を大切にしていきたいと思います。 真実をどう捉える? また、品質不具合や設備のトラブルにおける再発防止の取り組みにこの分析を活用しています。結論ありきの報告が多く、グラフの見方などを深く疑っていなかった点に気付きました。今後は、別の切り口から事象を捉えることで、これまで見過ごしていた現実を明らかにできないかという問いを持つように努めたいと考えています。 原因究明の本質は? 過去の経験から、品質不具合や設備トラブルの原因を掘り下げることで、根本原因が共通しているケースが多いと感じています。特に、ある地域では、事象の特定は得意である一方、原因究明が軽視されがちな傾向があるため、日々の業務の中でさらに踏み込んだ分析を実践し、原因究明の体質を根付かせたいと再認識しました。

データ・アナリティクス入門

仮説が導く学びの扉

仮説の役割って何? 「仮説」を立てる重要性を再認識しました。特に、3C(顧客・競合・自社)や4P(製品・価格・場所・プロモーション)といったフレームワークは、網羅的な仮説形成に有効であると実感しています。これまではあまり意識せずに活用してこなかったため、今後は欠かさず取り入れていこうと考えています。 従来方法の問題点はどう? 従来は、実績ベースで特徴や傾向を把握し、その後に仮説を立てる方法で業務を進めていました。しかし、その方法だと仮説が固定的になり、複数のパターンを検討できなかったり、現状にないデータへの仮説が立てられなかったりするというデメリットを改めて感じました。 新たな仮説の進め方は? そこで、今後はデータを見る前に課題に対して仮説を書き出すことから始めます。その際、3Pや4Cといったフレームワークを利用し、生成AIなども活用して個人のバイアスを抑えるよう努めます。検証段階では「WHERE」「WHY」「HOW」といった観点から複数パターンの仮説を立て、それらをデータとして記録し、「仮説→検証→結果」というプロセスを確実に回していきたいと思います。
AIコーチング導線バナー

「課題 × 認識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right