クリティカルシンキング入門

クリティカル思考で本質を見抜く

クリティカルシンキングは何? 受講を通して、クリティカルシンキングの大切さを改めて実感しました。これは「問いを立て、物事の本質を見極めた上で最適な解決策を導く思考法」と理解しています。 どの視点が重要? 問いを立てる際には、視点・視座・視野という三つの側面が重要です。過去には視座を変えたつもりでも、現場の視点に捕らわれ、最適な答えを導けなかった経験がありました。また、構造分解や要素分解のアプローチにおいても、ある一つの視点に偏り、正しい結論に至らないケースがありました。 MECEをどう考える? さらに、MECE(もれなく、ダブりなく)を意識せず中途半端な答えに終わっていたことも反省点です。こうした課題を克服するためには、日々の意識と訓練を続けることが不可欠であると感じています。 出張前の準備は? 新たに取り組みたいのは、毎回の出張前に提案資料を作成する前、クリティカルシンキングで学んだ内容を活かして整理することです。トピックごとにNoteを作成し、自分の考えを整理する時間をしっかり確保していくつもりです。 伝え方を改善する? また、思い込みで進めるのではなく、一度立ち止まり、本当に適切な方法であるかを考える時間を持つことを意識していきます。やっていること自体は間違いではないと認識しつつも、伝え方や進め方に改善の余地がある場面では、柔軟に変えていく姿勢を継続して持ち続けたいと思います。

デザイン思考入門

完璧求めず、共に進む学び

最初から完璧でいいか? 自身の業務を通じて、最初から完璧を求めすぎると時間をかけすぎるという課題に気づきました。自分一人で100%だと考えて作成しても、周囲からのフィードバックにより改善点が明らかになることが分かりました。そのため、最初から完成形を目指すのではなく、施策を実施しフィードバックを受けるサイクルを取り入れることでスピードを重視することの大切さを実感しました。 意見共有で成長する? また、皆で意見を出し合いながら改善を重ねる方法が、より良い成果や組織の育成につながると気付きました。反対に、対応が遅れると他者が先にアイデアを提示してしまったり、完成形に対する認識のズレが生じるリスクがあることも理解しました。 生成AIの活用ってどう? さらに、デザイン思考はモノ作りに限定されるものではなく、サービスや組織づくりにも応用できるという新たな視点を得ました。最近では生成AIが手軽に利用できる環境が整っており、未経験の分野でもアイデア出しやイメージの作成、迅速な改善が可能になっているため、この技術も積極的に活用していきたいと考えています。 正解は一つならない? デザイン思考は正解が一つではない分野です。誰に届けたいのか、相手にとって何が最善かという人間中心の視点を忘れずに、押し付けがましくならないように心掛けることの大切さを、アウトプットの際に改めて認識できた良い学びとなりました。

クリティカルシンキング入門

データで読み解く商談の真実

分析目的はどう決める? 数字の分け方や分解方法で、同じデータからまったく異なる分析結果が得られることを学びました。データ分析に取り組む際は、まず分析の目的を明確にし、その後で全体の定義(たとえば分析対象の期間など)を設定することが大切だと感じました。また、グラフ化することで視覚的に理解しやすくなる点も印象的でした。たとえ何も見えなくても、それ自体が正しい結果であると捉え、試行を続けることの重要性を再認識しました。 営業分析のポイントは? さらに、営業分析に応用できると考えた事例もありました。ここ半年間の商談を以下の要素に分解することで、自身の強みと弱み、そしてボトルネックの特定に役立てられるのではないかと思いました。具体的には、①顧客属性(業種、規模、地域)でどの顧客に強いか、または弱いかを把握し、②接点属性(チャネル、紹介元)から成果に結びつきやすいリードを見極める。そして、③商談構造(課題の種類、緊急度)で勝ちやすい案件の特徴を探り、④プロセス分析(商談フェーズ、失注理由)でどの段階に課題があるかを明確にするという点です。 MECE分析はどう考える? また、MECE分析に関しては、全体をどのように部分に分けるか、事象をどの変数で分解するか、そして全体プロセスの中でどこに問題が潜んでいるのかを考察することに難しさを感じています。皆さんはどのようにアプローチされているのか、大変興味があります。

クリティカルシンキング入門

論理と実践で挑む成長ストーリー

視点をどう広げる? 先入観や過去の経験に左右されず、偏った考えに陥らないことが非常に重要だと感じています。常に多角的な視点で問題にアプローチするため、MECEの原則に従って要因を整理し、重複なく抜け漏れのない議論を進める必要があります。また、問題解決のプロセスでは、目的意識をしっかり持つことが基本です。目的を見失うと、本質ではなく細部にとらわれがちになるため、常に問い続ける姿勢が真因に迫るための鍵となります。そして、学んだことを実践し、反復することで自分自身を鍛え上げることが大切だと考えています。 業務推進はどう進む? 現在、私が取り組んでいる業務推進上の問題や課題の解決活動においても、これらの考え方を実務に活かしていきたいと思います。現状の組織運営上の課題を明確にし、その本質を突き止め、再発防止策をしっかりと構築する仕組み作りに努めています。改善メンバーとの日々のディスカッションを通じ、ロジカルに問題に向き合う環境を創出することで、組織全体の進化と若手メンバーの育成にも繋げていきたいと考えています。 クリティカル思考はどう? また、業務にクリティカルシンキングを取り入れることは必要だと認識しています。実際に導入する際、業務全体の時間が一時的に増加する可能性はあるものの、問題の本質にたどり着き、解決および再発防止が実現できれば、その増加は一時的なものであると自分なりに結論付けています。

クリティカルシンキング入門

分解思考で拓くビジネス洞察

どう分析すべき? データの分け方に工夫を凝らすことで、その背景にあるビジネス状況をより的確に表現できることを学びました。単に漫然と分析するのではなく、まずはビジネス自体を深く理解し、その特性を把握した上で適切な仮説を立てるアプローチが重要だと感じました。 プロセスは必要? また、これまで「MECE=層別分解・変数分解」という理解でありましたが、今回、プロセス分解の視点にも改めて注目することになりました。問題が生じる「場所」を特定する際、この新たな視点が非常に有効だと実感しています。 保険契約の見方は? グループ会社の保険契約状況の見える化においては、同一保険の加入状況を売上金額、保険料、人員数、事業セグメントといった切り口で層別分解し、また対象資産と保険料率による変数分解を行うことが考えられます。同様に、業務効率化を図る際も、まずは業務プロセス自体を検証し、プロセス分解を通じて効率向上の余地がある部分を明確にすることが求められると感じました。 全体はどう見える? 今後は、入手した対象データに対して様々な切り口での見える化を実施し、そこから読み解かれる課題や方向性を対話を通して共通認識にまとめ、実際の行動に結びつけていきたいと考えています。場当たり的な改善ではなく、全体プロセスをMECEの視点で分解して俯瞰的に分析することで、より効果的な取り組みを優先的に進めていく所存です。

クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

データ・アナリティクス入門

問題解決で差がつく!実践の一歩

問題解決の重要性とは? 問題を特定し、要素を分解することについて、普段の業務ではそれほど深く考えず、安易に解決方法を決めてしまっていると痛感しました。問題箇所を解決した場合の理想像への影響度を検討することは重要であり、これは顧客への提案時にそのまま費用対効果として役立ちます。その結果、より効果的で説得力のある提案ができるようになると感じました。 理想像の共有方法は? また、理想像を定量的に判断できる指標として変換し、関係者と合意することも重要です。最初の問題設定で認識のズレが生じると、後からプロジェクトの方針が社内外の関係者と異なってしまうことがあります。今後は、認識のズレが起こらないように注意して取り組みたいと思います。 認識のズレをなくすには? 問題点や課題の設定を誤る場面が多いことに気づきました。社内の関係者間でも微妙に異なる捉え方をしているケースがあるため、理想像を定量的に指標化し、関係者と合意することを今後の業務で活用したいと考えています。 DX化推進での課題は? さらに、企業のDX化を推進する場面では、「どこに問題があるのか」や「なぜ問題が起きたのか」で、「人間の質」が問題となることが多々あります。これまではそのような問題に対する解決方法を提案することが難しかったのですが、今後は問題をさらに深く分解し、捉え方を変えることで解決策が見つかるかもしれないと思いました。

クリティカルシンキング入門

そもそもの問いが導く学び

なぜ問い直すの? 「そもそも…」という問いが学びの鍵であると実感しました。まず、いきなり解決策に飛びつく前に、「そもそも、何が問題なのか?」「なぜこのプロセスには時間がかかるのか?」など、基本的な疑問を問い直すことが大切だと感じました。この問いを、あらゆる角度から徹底的に洗い出し、「なぜ?」を繰り返すことで、真に解決すべき本質的な課題が見えてくるのです。 どう意見を集める? また、個人の経験や狭い視野に偏らず、周囲の意見を積極的に取り入れることも重要です。自分一人の考えに頼るのではなく、チームや組織全体で「そもそも」の問いを共有することで、対応策がぶれず、一貫性ある方向性を保つことができます。実際、現在取り組んでいる業務やプロジェクトの見直しにおいても、この問いの立て方が非常に役立っています。 何を再確認する? さらに、課題を洗い出す際には、MECEの視点を意識して、あらゆる可能性や側面から現状を見直すプロセスが求められます。表面的な解決策に終始せず、本当に必要な改善策を見極めるために、一度自分の考えが限定的であることを認識し、第三者の意見を参考にすることが不可欠です。 どう方向性保つ? そして、どんなに課題の洗い出しや解決策の検討を進めても、「そもそも」の問いをつねに握り続ける姿勢を忘れず、その問いに立ち返ることで、方針や解決策の一貫性を保持することができると確信しました。

データ・アナリティクス入門

仮説思考で課題を究める実践術

フレームワークは何に役立つの? フレームワークの使いどころについて、3Cや4Pといったものは聞いたことがあっても、実際にいざというときに活用できるかどうかが重要だと感じました。今回の実習では、仮説を立てる際に有効に使えると実感できたため、今後すぐに引き出せるように知識整理ツールで整理しておきたいと思います。今後触れる新たなフレームワークも同様に蓄積していくつもりです。 仮説思考で未来は変わる? また、仮説を考えること自体に意義があるという新たな視点も得られました。これまでは、漠然と考えるべき時に考えるという認識でしたが、仮説思考を業務に取り入れることで、課題に対するアプローチがより具体的かつ効率的になると感じています。今後は、積極的にこの考え方を意識して、業務改善に役立てていきたいと思います。 課題解決のヒントは? 部署や会社内に存在する課題を、フレームワークを活用して仮説を立てることで、本質的な問題点の抽出や、課題解決に向けた具体的な行動への落とし込みが可能になると考えます。漠然と感じる課題を仮説によって明確化し、実際の状況把握やデータ収集を通じて、もっともらしい原因に絞り込むことが大切です。そして、その原因を排除するための具体的な行動計画へと繋げ、もし課題が解決しなかった場合には、新たな仮説を立て行動に移すというプロセスを繰り返すことで、問題解決へと導くことができるでしょう。

データ・アナリティクス入門

経営者気分で学ぶ仮説解決術

データと仮説でどう考える? これまでの総復習を通して、まずデータを用いて問題の所在を読み解き、原因を仮説思考で考察し、その上で対策を検討するフレームワークを再確認できました。どんな状況においても、ロジカルに物事をとらえ、データを基に仮説を立てることで問題解決の道筋を描く大切さを強く実感しました。 なぜ一貫性が感じられる? また、ストーリー全体に一貫性があり、学びの流れが頭にしっかりと残りました。経営者になった気分で対策を検討できたことも、非常に印象に残っています。 マーケ実践はどう進む? マーケティングの分野では、日頃の活動にデータドリブンな視点を取り入れることで、施策の有効性の比較、優先順位の設定、費用対効果や効果の見通しなど、具体的な対策を実行に移す自信が持てました。施策の判断軸となる評価項目や様式を統一することで、正しい比較ができる点も大変有用だと感じました。 病院DXで何を改善? 一方で、病院のDX推進においては、導入率のトラッキングや向上施策、トレーニングの立案など、データに基づいた仮説と検証を繰り返す取り組みが今後の課題となると同時に、実践的な対策として役立つと考えています。目的を明確にし、過不足なくデータを収集、複数のメンバーと多角的な視点で仮説をたて検証することで、事前に設定した評価項目を使いながら、効果を正確に測る仕組みを構築する重要性を再認識しました。

データ・アナリティクス入門

ギャップを明らかにする学びの道しるべ

現状はどう認識? 課題解決のためのデータ分析を行う際は、まず「what」「where」「when」「how」の観点で現状とあるべき姿の違い、すなわちギャップを明確にすることが大切です。特に「what」では、現状と理想との間にどのようなずれがあるかを捉え、その認識を関係者間で事前にすり合わせておくと、混乱なく分析を進めることができます。 手法はどう整理? 次に、ロジックツリーやMECEといった手法を活用することで、要素を段階的に整理し、状況を階層や変数別に切り分けることが可能です。実際の業務においても、初めて触れるデータに関して上長とのギャップ認識のずれから分析をやり直すケースがあったため、事前の共有が重要だと感じています。 結果はどう活かす? また、分析結果をもとに報告書や提言を作成する際は、その場しのぎの発想に頼らず、体系的にロジックツリーを活用して現実的な対策を検討すべきです。社員の意識調査のアンケートなどでは、まず「what」「where」「when」「how」に関する仮説を立て、その上で使用項目の選定とデータ分析に入るプロセスが理想的です。 対策はどのように? さらに、社内教育後の報告書で今後の取り組みを提案する際には、すぐに実行できる対策と時間を要する対策に分類し、複数の段階に分けて具体的な打ち手を検討することで、実現可能な内容を選定することが求められます。

データ・アナリティクス入門

データで切り拓く問題解決の未来

データで課題をどう切り分ける? 問題解決のプロセスやロジックツリー、MECE、あるべき姿と現実のギャップを定量的に把握するなどの知識は、実際に活用する際には難しさを感じました。特に、データの観点から課題を切り分ける作業はやや複雑でした。マーケティングや事業計画など多様な視点が浮かぶ中で、データに基づいて論理的に整理する必要性を実感しました。 深まったMECE理解の意味は? 総評として、問題解決プロセスやMECEの理解が深まったことは良い成果です。データの視点で課題を切り分ける挑戦には大きな可能性があります。今後経験を積み重ねることで、さらに力をつけていくことが期待されます。 日常業務にどう活かす? 学んだ知識を実務で活かすために、日常業務での意識的な取り入れが重要です。データ活用の支援においては、問題解決のプロセスを意識し、ロジックツリーを用いて問題の分解や特定を進めます。また、アンケートの相談が多いことから、その目的とKPIの確認を行い、MECEを意識した取り組みが必要です。 具体的なデータ活用法は? データ活用のサポートでは、問題解決のプロセスやロジックツリーを確認し、相手との認識を合わせ、問題点を明確にします。問題のあるべき姿と現実のギャップを定量的に示し、解決策の検討を行います。アンケート項目の確認においても、MECEを意識して進めていきます。

「課題 × 認識」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right