データ・アナリティクス入門

見えない価値を探る学びの場

目に見えぬリスクを感じる? 既に目に見える情報だけでなく、目に見えない要素にも着目する大切さを学びました。たとえば、帰還していない飛行機の状況を考えることで、現状からだけではなく、潜在的なリスクや可能性についても想像する力が養われると感じました。また、出版される経営に関する本は、その裏付けとして成功しているという実績があることに共感を覚えました。 数字に秘めた戦略は? 一方、私の業務は既存のデータをまとめ、数字や報告資料に反映させるという作業が中心です。そのため、現時点ではこの学びが直接的に業務に活かせるとは感じられていません。しかし、今後、毎月提出する経営会議用の資料に予測や分析を加えることで、より深い洞察が業務の判断材料になり得ると考えています。特に、条件を比較しながら推測を行うことで、より実践的な分析が可能になると期待しています。

データ・アナリティクス入門

仮説から見える実践の道

目的は何でしょうか? まず、分析に着手する前に、目的意識を強く持つことが重要だと感じています。どのようなデータを用い、どのような加工を施して活用するのかを熟考することで、分析の精度が高まると思います。 仮説設定の秘訣は? 次に、仮説を立てることが分析の出発点であり、実際の数値や製造指標を軸にポイントを絞り込むことが有効です。数字を単に羅列するだけではなく、各項目の重要度や意味を十分に考慮したうえで比較分析を行うことが大切です。 分析結果はどう活かす? また、これらの分析は、次の四半期の実績検討に向けた具体的な資料となり得るため、単なるデータの把握に留まらず、実践的なアウトカムにつなげていく必要があります。日常業務においても、データの活用状況を見直し、改善のヒントとする取り組みが求められていると実感しています。

データ・アナリティクス入門

実践で変える!問題解決の第一歩

試す手法は何だろう? 問題の要因がある程度明確になったら、試しやすい手法で課題解決に向けた取り組みを実際に試すことが重要です。たとえば、既存の手法と定量的に比較できるA/Bテストのような方法を設計し、実践することが望まれます。 改善はどう実現する? また、課題の分析だけで満足せず、実際に改善を施して目的を実現することが肝要です。データ分析を行う際には、最終的に何を実現したいのかという目的を常に念頭に置く必要があります。 仮説はどう組み立てる? 一方、データ分析の手法に囚われ過ぎると、単にデータを出すことに多くの時間がかかり、問題解決に辿り着かない恐れがあります。したがって、まずは問題の要因を特定し、その後、有識者とのディスカッションや壁打ちを通じて、改善のための仮説を迅速に立案・実行できるように取り組むことが大切です。

データ・アナリティクス入門

数字が導く学びの実験室

ボトルネックはどこ? データをプロセスごとに分解してボトルネックを特定すると、問題の把握が容易になります。各フェーズの転換率を算出することで、定量的にボトルネックを明らかにでき、値が異なった場合でも率に統一して比較することが可能です。また、ある仮説とその対概念にあたる仮説を併せて検証することで、思考の幅を広げ、複数の仮説を判断基準に基づいて評価し、絞り込みを行います。 A/Bテストで何が? A/Bテストでは、比較するグループ間の介入の違いをできる限り絞り込むことが求められます。これにより、広告のA/Bテストや販売実績の評価において、クリエイティブにどの要素が反映されるべきかを具体的に検討できます。施策をプロセスごとに分解し、定量的な評価を実施することで、成功要因や失敗原因を明確にし、次の改善策の立案に役立てています。

データ・アナリティクス入門

仮説と五視点が導く仕事の知恵

どうして5視点が必要? 今回の学習で特に印象に残ったのは、比較分析を行う際にプロセス(仮説)が必要であり、さらに5つの視点(インパクト、ギャップ、トレンド、ばらつき、パターン)と3つのアプローチ(グラフ、数字、数式)の存在が重要であるという点です。 進める分析手順は? 分析のプロセスは、まず目的(問い)を明確にし、問いに対する仮説を立て、必要なデータを収集し、そのデータをもとに仮説を検証するという手順で進められます。これまで、どの視点を重視するかについて特に意識していなかった自分にとって、今後はこの5つの視点から必要なものを選び、意識的に分析を行う癖をつけることが大切だと感じました。 実務でどう活かす? 仕事のあるゆるシーンにおいても、自分の考えや判断の根拠として分析を活用していきたいと思います。

データ・アナリティクス入門

視点を広げる根拠の解決術

原因考察と仮説検討は? 原因を考える際、問題発生までのプロセスを洗い出し、対概念などのフレームワークを用いることで、仮説検討の視点を漏れなく広げられると感じました。また、判断基準を設けた上で重み付けを行ったり、A/Bテストを実施して検証する方法も学び、具体的な打ち手の決定に役立つと感じました。 解決アプローチはどう? 業務におけるこれまでの問題解決のアプローチは、決め打ちに偏りがあり、問題点の洗い出しの視点が狭かったことや、なぜその結論に達したのかの言語化が不足していたと痛感しました。今後は、what→where→why→howのステップに沿って原因の観点を広く整理し、データを比較しながら根拠を持って仮説を立てたいと考えています。さらに、打ち手の決定に際しては、A/Bテストをうまく活用することを試みたいと思います。

データ・アナリティクス入門

数字に秘めたマーケ戦略の可能性

指標を再確認する? クリック率、コンバージョン率、A/Bテストなどの指標については、EC企業を得意先とした営業活動の中で既に馴染みがありました。しかし、理解が深まっていなかった部分もあったため、改めて学ぶことができ、大変有意義でした。 数値判断の秘訣は? ひとつひとつの項目を数値化し、比較検討する過程で、意思決定における数値情報の重要性を実感しました。WEBマーケティングが現業務において不可欠なタスクであることを再認識するとともに、今回の講座とW4の動画をもう一度見直し、さらなるスキルアップを図っていきたいと考えています。 データ分析の新展開は? また、社内で扱う売上実績データとWEBマーケティングで得られる情報との関連付けを進めることで、これまでとは異なる視点からの分析が可能になることを期待しています。

データ・アナリティクス入門

数字で見つける成長のヒント

手法の違いは何だろう? 一般的な平均値は手軽に利用できますが、データのばらつきや目的に応じて、加重平均や幾何平均などの手法を採用する必要があると理解しました。普段は精度管理のため標準偏差を使用していますが、具体的な事例を通じて、他の場面でも活用できるというイメージが湧きました。 分析のコツは何? データの比較から仮説を立てる苦手意識が少し和らいだように感じます。定量分析では単純平均や標準偏差を用いていますが、定性分析も一旦定量値に置き換えて試してみたいと思います。また、人事考課にもデータが活用できるため、評価者間のばらつきや傾向を把握するのに役立つと考えています。さらに、臨床検査の提供プロセスにおいて、各段階でのかかる時間を分析し、収束していない部分を可視化することで改善の余地を見出せる可能性を感じました。

データ・アナリティクス入門

目的と数字が織る成功のヒント

数字の真意は何? この講座では、まず常に目的を意識することの大切さを学びました。数字そのものを見るのではなく、数字が何を意味するのかを瞬時に理解し、その上で適切な比較や分析を行うポイントを明確にすることが重要だと感じました。基本的な枠組みを意識し、それを習慣化することで、数字を正確に捉え、的確な意思決定につなげることができると実感しました。 分析と予測はどう? また、担当するサービスの現状分析や戦略立案のプロセスにおいても、単純に数字を追うのではなく、目的に基づいた各数字の解釈とその比較が不可欠であると学びました。さらに、来期の市場や売上予測に向けた取り組みでは、具体的な市場データが限られている中で、アクセス可能なデータをもとに市場の傾向を予測し、現状分析から将来の売上を導き出す方法の重要性を感じました。

データ・アナリティクス入門

比較で見える回収改善のカラクリ

分析の基本は? 債権回収の分析にあたっては、「分析は比較である」「apple to apple」「生存者バイアスに気をつける」の三つのキーワードを常に意識しています。まずは、分析の目的を明確にし、全体像をビッグデータで可視化するところから始めます。 現状評価はどう? 具体的には、保有している債権全体と請求可能債権の集計を行い、過去からの変遷を比較することで現状の回収状態を評価します。その上で、改善が求められる債権セグメントを明らかにしていく方針です。 集計イメージは? まずは集計のイメージを作成します。保有債権を請求可能なものとそうでないものに分類し、細分化した内容を表にまとめます。イメージが固まったらビッグデータを活用して集計を実施し、過去からの遷移表を作成して比較しやすい状態に整えます。

データ・アナリティクス入門

データ分析をもっと身近に感じよう

比較分析の考え方とは? 分析とは比較であるという考え方には改めて納得しました。特にビジネスの現場では、目的に応じて分析のアウトプットが変わるため、前提条件の確認を怠らないよう心がけたいと思います。 データ分析の意識法は? 日常業務でデータに触れる機会が多いですが、まずは仮説や問いを立て、目的に沿った分析を意識したいです。データ分析自体を目的とせず、次の提案につながるアウトプットを目指します。 仮説を立てる重要性について 正しい仮説や問いを立てるためには、現状把握や周りとの意見交換を徹底し、怠らないようにします。ビジネスのゴールから逆算してデータ分析を行い、常に目的を忘れないようにします。また、データの整理や可視化についても学び、分析の全体的な流れをスムーズに進められるようにしていきたいです。

データ・アナリティクス入門

仮説と実践が導く成果の道

成果をどう目指す? データ分析を行う際、まず数字やデータに飛びつくのではなく、最終的にどのような成果を出したいのか、何を比較すればよいのかといったアウトプットのイメージを明確にし、客観的に整理することが重要だと感じました。実務での実践力と、学問としての知識習得の両立を意識する必要性も再認識しました。 論点はどう整理する? また、コンサル業務においては、定量分析を進める中で迅速に論点を明確にし、全体の論点を中論点・小論点に分解することで、検証しやすい構造を作ることが求められます。そのため、まず仮説を立て、正しい比較対象に基づいたデータ分析を実施することが大切だと考えています。さらに、このような思考法やプロセスをジュニアメンバーにも積極的に共有し、育成に役立てていきたいと思います。

「比較 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right