データ・アナリティクス入門

データ分析でチーム力: 組織全体を強化する方法

仮説検証の重要性とは? 目的に基づいて仮説を立て、データを収集し、その仮説を検証するサイクル(プロセス)に視点とアプローチを加え、データを読み解くこと。その際、代表値を用いる場合、判断方法には多くの選択肢があり、散らばりも含め、目的やデータ自体に合わせて使い分けることが重要です。また、平均は外れ値に弱いことを忘れず、必要な対処を行うことが大切です。 成績把握のポイントは? 日次や月次ごとの担当者間の成績や能力を把握・分析する際には、課内メンバー間の横比較や個人の推移を確認します。その際、外れ値に注意しながら平均値を用いるのは有効です。これにより、適切な組織の人材配置や各担当者の対応許容量の検証・分析が可能となります。 組織全体の課題解決方法は? 担当者間の成績を日次や月次ごとに分析することで、横比較や個人の進捗を把握し、組織全体の課題解決の促進に向けて適切な手を打つタイミングや個人の対応許容量をデータで分析します。適切に個々の許容量を管理することで、弱点の強化策や適材適所の人材配置の判断材料として活用します。

データ・アナリティクス入門

仮説から実践へ!データ分析の力

なぜ目的と仮説? データ分析を行う目的を明確にし、仮説を立てたうえで必要なデータを集める流れの重要性を改めて実感しました。分析作業に入る前にしっかりとした思考を持つこと、そして分析中はどのようなデータをどのように加工すれば分かりやすいか、また相手に伝わるかを常に意識することが大切だと感じています。さらに、生存バイアスや比較の公平さ(Apple to Appleでの分析)が保たれているかを、その都度確認することも忘れないようにしたいと思います。 どう見積もり比較? 最近は外部ベンダー選定の作業を経験し、見積もりを出してもらうための一連の流れが中心でした。そこで「出てきた見積もりをどのように比較すれば、今後の外部委託時に円滑な運用ができるのか」という観点から、今回学んだデータ分析の基礎的な考え方が早速役立つと感じました。 目的設定はどう? 今週の学習では特に疑問に思った点はなかったものの、今後のグループワークを通じ、目的と仮説をどのように設定しているのかについて、他の受講生の意見も伺ってみたいと思います。

データ・アナリティクス入門

反論と仮説で広がる新視点

今週の経験に学ぶ? 私は人事部でDXに取り組み、最近はデータ分析を担当しています。今週も経営層からのご指摘があり、改めて反省する機会となりました。レポートの流れに特殊な点がある中で、社会人としての危機感を常に感じながら業務に取り組んでいます。 仮説の意義を考える? 指示内容は、様々な切り口で他社の人事データと比較することと、仮説を複数立てることでした。当初はどちらかに偏り、特に仮説に引っ張られすぎて決め打ちしてしまったため、網羅性が欠けた点がありました。しかし、教材のWEEK04を学ぶ中で、両方の重要性に気づくことができました。 具体策は何だろう? 具体的には、次の3点を意識することにしました。まず、決め打ちによる思考の狭まりを防ぐために、自分自身で反論や反証を考える習慣をつけます。次に、同じプロジェクトのメンバーにも仮説を立てる意義や、仮説作成のポイントを共有し、ディスカッションの時間を確保するようにします。そして、日常生活の中でもフレームワーク(3Cや4P)を意識して活用し、視野が広がるよう努めます。

データ・アナリティクス入門

なぜ?が鍵!明確目標のデータ分析

比較って本当に必要? ナノ単科の講座を受講して、データ分析における比較の大切さや、目的を明確にする意識が身につきました。分析とは、単に数値を眺めるだけではなく、何を見せたいのかという目的を持って行うものだと感じました。 なぜ条件を揃える? 講座では、同じものを比較する際に条件を揃えることや、なんとなく行っていた作業を言語化して知識として整理する重要性について学びました。また、各手法を選ぶ理由に「なぜ」を問う習慣が、より精度の高い分析に繋がると実感しました。 分析をどう活かす? 顧客データを基にした採用分析や、改善施策の振り返り、マーケットの動向を踏まえた戦略策定など、具体的な課題特定のプロセスを通じて、分析の実務的な活用方法についても深く考えることができました。 理由は何だろう? さらに、普段の業務においても、ただ感覚に頼るのではなく「ここを見せたいからこのグラフを使う」「ここで比較するために条件を合わせる」といった、明確な理由付けを意識してデータを扱うことの重要性を再確認する機会となりました。

データ・アナリティクス入門

仮説×分析で広がる学び

最初の目的は何? 分析に対して明確な目的意識を持ち、初めから仮説を立てるというプロセスは非常に実践的で役立ちました。最初に結論の方針を定め、その上でデータ収集を進める手法は、後の分析をスムーズに導いてくれると実感しています。 データ分解の意味は? また、データを分解し、得られた情報をさらに細かく吟味してストーリー性を持たせる工夫も印象的です。仮説の過程や構成要素を記録しておくことで、最終的な結論と照らし合わせながら再確認するプロセスも納得できるものがありました。 なぜ比較が必要? 加えて、複数の対象者から得られる情報において数を揃えて比較をするという点は、分析結果を信頼性の高いものにするための大切なポイントだと感じました。これにより、結論を支える根拠が一層明確になり、聞き手が納得しやすい資料作りが可能になっています。 学びの意義は何? 全体として、仮説に基づいたデータ収集と詳細な検証、そして論理的なストーリーの構成という一連の手法は、現実の業務においても非常に活用できる貴重な学びとなりました。

データ・アナリティクス入門

データ分析で営業力をアップ!

データ分析の重要性とは? データ分析について、これまで漠然と取り組んできましたが、「データ分析は比較である」という説明が非常に印象的でした。データを扱う際には、その内容をよく考えて、意味を成すものを選別して分析することが大切だと感じました。 営業とマーケティングへの活用 私の仕事は営業とエリアマーケティングを担当しており、売上の変動や要因分析にデータ分析が活用できると考えています。しかし、具体的な活用法についてはまだイメージが固まっていないのが現状です。今後の講義を通じて、どのように自分の仕事に役立てられるかを考えていきたいと思っています。 生産設備におけるデータ活用の可能性 また、私は工場で使用される生産設備の部品販売に携わっています。部品は用途によってさまざまな構成があり、データ分析を通じて顧客がどのようなスペックを求めているのかや、年間でどの程度の生産が可能なのかを理解できれば、マーケティングに大いに役立つでしょう。そのためにもデータ分析に関する書籍や統計学の知識を学ぶ必要があると考えています。

データ・アナリティクス入門

目的明確で築く確かな結論

分析目的は何? 分析の目的を明確にすることは非常に大切です。何のために分析するのか、その目的をはっきりさせた上で、比較対象を可能な限り条件を揃えて行うことで、有益な分析結果が得られます。結果として、比較のためのデータ収集が重要なプロセスとなり、その積み重ねが有意義な結論に結びつきます。 品質管理はどうする? また、品質管理の業務においては、障害の原因分析や発生した障害に対する対策の有効性を検証する際にも、この手法が有効です。分析の目的が既に明確であれば、次に課題となるのは、比較対象となるデータの選定と収集です。その際、これまでの経験を踏まえ、しっかりと仮説を立てながら進めることが、正確で有意義な結論を導くポイントとなります。 仮説作成はどう進む? さらに、仮説を立てる場合は、個人の経験や知識だけに頼るのではなく、周囲の知恵や知識を共有して取り入れることが重要です。関係者との情報のやり取りが、より有効なデータの選定と収集につながり、最終的には信頼性の高い結論を導き出すための大きな助けとなると考えます。

データ・アナリティクス入門

比較の視点が開く学びの扉

データ比較の意味は? データ分析は本質的に比較であり、たとえばパソコン購入時に「購入目的」や「必要性」を問い直す姿勢には、根本から見直す意義を感じました。比較の材料が多岐にわたるため、広い視点で重要な要素を捉えることが、適切な比較―すなわち分析―につながると実感しています。 地域診断の見方は? また、今後「地域診断」を学生に教える際には、国、都道府県、市町村の各レベルでのデータ比較や近隣地域との比較が必要であることを強調したいと考えています。さらに、データの推移を見る際には、時代背景や社会情勢の変化、住民の価値観、教育水準、生活水準、文化、財政状況など多様な観点からの比較が不可欠です。 指導計画はどうなる? 来週から始まる学生の実習地での地域診断指導に向け、資料の見直し、指導スタッフとの方針の共有、記録用紙の修正を行う予定です。複数の実習施設に分かれて進められる実習では、各グループが進捗状況を発表することで、自分の実習地と他との比較が自然に行われ、異なる分析方法を学ぶ良い機会となると期待しています。

データ・アナリティクス入門

多角的視点で広がる分析の世界

多角的な比較の意味は? 分析という作業は、さまざまな比較を通じて進めるものだと実感しました。異なる業界の方々と交流する中で、これまでにない視点やアプローチを知ることができ、データ分析における多様な考え方を学ぶ良い機会となりました。特に、GWでの話し方や取りまとめ方は大変参考になり、自分自身もその手法を取り入れたいと感じました。 成果分析の幅は? 具体的には、昨年の実績や計画との比較、さらには類似製品や過去のデータ比率といった複数の切り口での分析を行っていく予定です。これらの視点を用いて、毎週の実績を追いながら着実に分析の幅を広げていきたいと考えています。 導く結論のヒントは? ただし、現時点では分析からどのような結論を導き出せるかという点で、まだ十分な引き出しがないと感じています。この部分については、今後さらに知見を深め、充実させていきたいと思います。 他の手法はどう? また、他の受講生の皆さんが業務においてどのような比較手法を用い、データ分析を実施しているのかも非常に興味深く感じました。

データ・アナリティクス入門

数字が語る学びの秘密

データ比較の基本は? 他のデータと比較することが、意味を見出すうえで重要だと理解していましたが、件数が多いデータ同士の比較では、代表値を用いる必要があることや、データの分布状況を考慮する必要がある点まで深く意識したことはありませんでした。今回の学習で、データをビジュアル化して各々の特性を目で確認することで、仮説が立てやすくなる一連の流れが理解でき、非常に勉強になりました。 数値の習得方法は? ただ、加重平均や幾何平均、中央値、標準偏差といった細かな数値の算出については、繰り返し実践しながら学んでいかないと身につかないと感じました。そのため、何度も反復して練習する必要性を痛感しました。 資料作成にどう活かす? 今後、資料作成の際に付録データを掲載する場合は、今回学んだデータのビジュアル化を活かし、読み手に伝わるようなデータ表現を工夫してみたいと思います。また、データ分析の際には、どのような状況でどの代表値が適切かを踏まえ、代表値と散らばりを考慮して数字を集約していくことを意識したいと考えています。

クリティカルシンキング入門

知識から実践へ―反省が未来を創る

知識と実践のギャップは? グロービスの学習では、毎週のミニレポート作成を通して「知っている」と「使える」の違いを実感しました。ライブ授業の中で問われた際、インプットしたはずの内容がすぐには出てこなかったこともあり、知識を業務で実際に使うためには、継続的な反復練習や学んだことを意識的に活用する機会を作ることが重要だと感じています。 社内評価はどう変わる? また、社内のモチベーションサーベイの分析業務についても、これまで数値の比較に終始していた自分のアプローチを見直す機会となりました。今回、ライブ授業で学んだ分析のステップを業務に取り入れることを決意しました。 分析の手順は何? 具体的には、まず分析の目的を明確にするために問いを立て、その問いを共有することが大切であると認識しています。次に、情報を工夫し、必要に応じて新たな列を追加したり、割合を算出したり、データの並び替えを行います。最後に、グラフへと視覚化することで、数値だけでは見えにくかった情報を一目で把握できるようにする工夫を実践していきます。

クリティカルシンキング入門

切り口から紐解く数字の魅力

数字の解析はどうする? 今週は、数字を分解する方法について学びました。数字はそのまま扱うのではなく、グラフや比率などに加工することで、より分かりやすくなるという点に気づきました。また、データを仕分ける際は、さまざまな切り口を考えて書き出すことが重要であると学びました。得られた数字の解釈に思い込みすぎず、結果が出なくても構わないという柔軟な姿勢が大切であり、迷った際には別の切り口からアプローチすることが有効だと理解しました。さらに、実践に際しては、属性、変数、プロセスという3つの切り口からMECEの概念を活かして分解する方法も学びました。 売上分析はどう進む? この学びを活かして、月次の売上報告書の分析に取り組んでみたいと考えています。まず、売上を顧客数×単価の視点から自社の過去の傾向を整理し、課題を特定します。次に、その原因を明らかにするため、顧客をいくつかの切り口に分け、それぞれの単価傾向を比較してみます。最後に、分析結果から導かれた解釈が適切かどうか、会議で意見を聞くことで確認していく予定です。

「比較 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right