データ・アナリティクス入門

広い視点で仮説を立てるコツ

なぜ複数の仮説が大切? 仮説を立てる際の重要なポイントはいくつかあります。まず、確からしい仮説がある場合でも、それに固執せず、複数の仮説を立てることが大切です。また、異なる観点から仮説を立てることで、見落としを防ぎます。特にフレームワークを活用することによって、網羅的に仮説を立てることが可能です。例として、3Cや4Pのような方法がありますが、分類に自信がなくても、広い視点で考えることが目的ですので心配ありません。 データ収集で何を探す? データ収集においては、比較対象を意図的に選び、反論を排除するための情報まで集めるようにしましょう。仮説を簡単に切り捨てないことがポイントです。 どうして視点を広げる? 売上が低迷している商品のリニューアルや新商品のコンセプト評価が思わしくない場合、特に3Cの観点から原因仮説や戦略仮説を立てることがあります。その際、視点が狭くならないよう、予測可能な答えをいったん頭から離し、第三者の視点で仮説を立ててみることが重要です。また、「顧客」と「競合」といった視点での分類に迷うことがありますが、分類自体に注力する必要はありません。仮説を排除した際の理由をデータで示す必要があるので、安易に仮説を切り捨てないようにしましょう。 フォーマットで何を改善? 仮説立てのフォーマットには、仮説を切り捨てた理由を記載する項目を設けることが有用です。また、「製品」に関しては、3Cだけでなく、「パッケージ」「味」「価格」なども考慮に入れたフォーマットに変えるのが良いでしょう。フレームワークを活用しても、一人では限界があるため、他部署の方々の協力を得ることも効果的です。

クリティカルシンキング入門

グラフで伝える!データ活用の新発見

グラフの特徴は? グラフに関して、以前は感覚的に理解していたつもりでしたが、今回の学びを通じてその理解がより明確になりました。例えば、帯グラフと円グラフの違いを再確認しました。円グラフは数値の大きさを強調する一方で、帯グラフは要素間の比較がしやすいという特徴があります。また、棒グラフと折れ線グラフについても理解を深めました。棒グラフは推移を強調し、折れ線グラフは変化や傾向を捉えやすくする役割があります。 分析手法は何? スライド作成における学びとして、データの解釈を示す際には基礎データを加工し、図表を用いて分析結果を表現するプロセスが重要です。しかし、その前にキーメッセージを仮説として立て、それに基づいたひと手間を加えることが大切であると理解しました。特にサンプル数が多い場合、このプロセスは複雑になることがあります。 業務にどう応用? この学びを業務にどう活かすかについても考えました。リサーチ業務では、統計データや一般公開データからリサーチペーパーを作成する際に、適切な分析視覚を導き、適切な図やグラフを選択するスキルを磨きたいと思います。企画立案業務やプロジェクトの計画・遂行においては、質的情報を効率よく示すための工夫が求められます。特に分かりづらい内容を文章で表現する際には、フォントの選択や文章の配置、配色などを意識して、効果的に伝えるよう心掛けたいと考えています。 資料提案の工夫は? 業務においては、現在取り組んでいるプロジェクトの提案資料作成において、学んだことを応用する予定です。スライドを用いる際には、「メッセージ」や「見せ方」に注意し、情報を盛り込みすぎないよう意識します。

データ・アナリティクス入門

仮説とデータで見える改善の鍵

比較分析のポイントは? 今回の講義では、業務改善や標準化に取り組む上で、比較分析の重要性を再認識しました。まず、比較の軸として「インパクト」「ギャップ」「トレンド」「ばらつき」「パターン」という5つの視点を意識することが基本であると学びました。また、問題・目的・問いを整理し、仮説を立てた上でデータを収集・加工し、検証していくプロセスの大切さにも気づかされました。仮説を立てる際には、MECEを意識して常識にとらわれず新しい情報も取り入れつつ、まずはざっくりとした仮説を作成する。その後、必要な検証の程度を見極めながら、情報収集と分析を行い、仮説を肉付けまたは再構築していくという流れが印象に残りました。これらの仮説思考のクセを身につけることが、今後の業務改善に大いに役立つと感じています。 業務の課題は何? また、実際に自分の業務改善に取り組む中で、長年携わってきた業務では「問題」として捉えられていない部分があるのではないかと考えています。そのため、まずは業務にかかる時間や売上といった指標を用い、仮説を立てて検証するアプローチを試みることにしました。具体的には、商談、見積、受注率、輸送費などの中から一つの業務を選び、その業務に要する時間を分析することで、担当者や取引先による差異が見られるかどうかを検証していきます。 数字の読み方は? さらに、仮説思考や全体的な思考力を養うため、以前紹介していただいた『定量分析の教科書』を購入し、数字の読み方や使い方について継続して学んでいく予定です。これからも今回学んだ手法を業務改善に活かし、実践を通して思考の習慣化を図っていきたいと考えています。

クリティカルシンキング入門

数字を味方に!分解力で成長する分析術

数字を味方にするには? 数字を味方にするには「分解」が必要であることを学びました。また、分解には複数の切り口で行うことが大切です。単純に機械的な切り口では、本当に欲しい結果が得られにくいため、定性的な仮説を持ちながら視点を変えつつ切り口を探すことが重要です。 手を動かすことの意義とは? 特に「まずは手を動かす」という点は感銘を受けました。やってうまくいかなければ、それは失敗ではなく有効ではなかったことがわかるというパラダイムは新鮮であり、大きな学びとなりました。 MECE手法で得られるものは? 手法としてMECEを活用することで、適切な分解に繋がることも学びました。「分解する」と一言で言っても、最低限の分解方法の知識がないと意味がありません。MECEの手法を学び、仮説を立てながら実践に移したいと思います。 キッチンカー分析にどう活かす? 現在、自社の敷地内に出店しているキッチンカーの売上傾向の分析を行っていますが、この分析に今回学んだことが役立つと考えています。今まではデータを機械的に分解し、データを集めて傾向を調べ、次の仮説を立てていましたが、そもそもの分解が正しいか疑問を持つところから始める必要があります。異なる切り口によって、より効果的な分解と分析に繋がるので、その方法を実践してみます。 AIとの協働で得られる発見は? 上記の集計しているデータを見直し、自分で立てた仮説とAI分析による切り口の提案を比較してみるつもりです。切り口や分け方を自分で考えると同時に、AIでもうまく提案させるようなプロンプトを工夫し、斬新な発見ができる方法を模索したいと思います。

データ・アナリティクス入門

データ分析で見つける新たな視点

分析プロセスの目的は? 分析は、目的に基づいて要素を分けて整理し、意思決定に活かすためのプロセスです。重要なのは、分析が迷子にならないようにすることです。目的を持ってデータを収集し、それに基づいて加工・分析を行うことが求められます。分析は比較となり、データの種類に応じた適切な加工法を使って意味を明確にすることが重要です。 視覚化手法をどう活用する? 視覚化の工夫も、分析の際には非常に役立ちます。例えば、n択の選択人数を割合で見る、全体に対する比率や割合を円グラフで表現するといった工夫が考えられます。推移の比較には縦棒グラフが適しており、要素間の比較には横棒グラフが効果的です。 仮説設定がなぜ鍵となる? 分析のプロセスで大切なのは、目的や仮説を明確にすることです。仮説をもってデータを収集し、加工して結果を導き出す過程で、なぜその分析を行うのか(背景)、そしてそのデータから何が言いたいのか(主訴)を明確にすることが鍵となります。また、仮説が誤っていると判明した場合は、分析の進め方や視点を見直し、正しい結論に導くことが必要です。 学んだことをどう実務に活かす? さらに、ライブ授業で学んだTIPSを実務に活かし、具体的なデータの可視化手法に取り組んでみることで、理解が深まります。質的データに関しても、名義尺度や順序尺度といった基本を学び、さらなる分析力を身につけてください。 このように、分析の目的やデータの加工法についてしっかり理解し、視覚化手法を活用することで、効果的な分析が可能になるでしょう。学んだことを実際のデータに適用し、実践を通じて、さらなるスキル向上を目指してください。

データ・アナリティクス入門

仮説力で拓く新たな学びの旅

仮説とは何か? 仮説とは、論点に対する一時的な答えを意味します。仮説を立てる際には、決め打ちせず複数の可能性を検討することが重要です。フレームワークを活用して、どの指標を基準に、何と比較するか、またそのためにどのようなデータを集計し、どのように見せるかを考える必要があります。 データはどう取る? また、着目する指標や比較対象のデータを収集する際には、「誰に、どのように聴くのか」という点が大切です。都合の良いデータだけに頼ると、誤った仮説を前提にしてしまうリスクがあります。他の可能性を十分に考慮することで、不要な仮説を排除し、より正確な情報に基づいた議論につなげることができます。 議論はどう進む? 日常の業務においても、仮説をもとに論点を提示し、議論を重ねる場面が多いです。これまで経験や肌感覚から決め打ちしていた仮説も、複数の視点で検討することで、より網羅的かつ具体的な検証が可能になります。仮説を裏付けるデータの示し方や、どのように比較し、提示するかという方法も試行錯誤の対象です。 人事事例はどう見る? 人事領域の取り組みとしては、スタッフが出会い採用内定、入社からその後の活躍、さらには休職や退職に至るまでのジャーニーマップを構築した事例が挙げられます。まずこれまでの経験や収集できるデータをもとにストーリーとしてのジャーニーを描き出し、その後、ヒアリングや不足しているデータの補完によって仮説を検証・肉付けしていくという方法です。このとき、現状の仮説が網羅的かどうか、また他の切り口がないかを再確認し、データの取り方や示し方を見直すことが大切です。

データ・アナリティクス入門

数字で見える学びの未来

どうして視覚化すべき? 数字に集約することと、目で見て理解することの大切さを再確認しました。纏めたデータをグラフ化するなど視覚化することで、ヒストグラムなどを活用しながらデータのばらつきを直感的に把握できる点が印象的でした。 比較で何が見える? また、データ分析は「比較」に基づく作業であり、仮説思考が重要だと感じました。分析のプロセスでは、仮説を立て、異なる視点とアプローチを用いることによって、より本質に迫ることができると理解しています。 代表値はどう使う? 代表値の使い分けと散らばり(標準偏差)を組み合わせる方法も興味深かったです。平均値や中央値、加重平均、幾何平均など、用途に応じた手法があるため、Excelで計算できることから複雑な計算式を覚える必要はなく、実務で活用しやすい点が良いと感じました。 成約率との関係は? さらに、営業活動のように暴露機会と成約率、またユーザーの購買意欲と成約数との因果関係を数値化する場合、代表値だけでなく標準偏差による散らばりを検討することで、ユーザーの傾向をより正確に導き出すことができると考えています。まずは仮説思考から取り組む姿勢が大切だと再認識しました。 グラフの魅力は? 最後に、提供される表形式のデータを様々なグラフで可視化し、検証のヒントを得る点も魅力的です。従来の平均値や中央値に加えて、標準偏差などの散らばりを取り入れることで、ユーザーの購買情報をより明確に把握できる可能性が広がっています。定性情報をいかに数値化してデータ分析に活用するか、その工夫が今後の課題であり、挑戦してみたいと感じました。

データ・アナリティクス入門

データのばらつきを活用した営業活動の最適化

標準偏差の重要性とは? 分析において「比較」が重要であり、その方法を学びました。特に標準偏差について具体的な事例を交えながら学んだことは、今後に生かせると感じています。 仮説思考の新たな視点 また、仮説思考についてはプロセス・視点・アプローチが具体例に挙げられ、理解が深まりました。プロセスにおける考え方はこれまでの学びとも共通しており、理解しやすかったです。しかし、「トレンド」と「ばらつき」の視点については、これまで感覚でとらえていた部分があり、それを意識する重要性を理解できました。これは仕事のみならず、さまざまな場面で活用できると感じています。 標準偏差で何を補完する? 営業活動や生産計画の立案において、これまで単純平均や中央値を使用していたものの、不足感がありました。それが標準偏差による補完だったと気づきました。私が扱う商材の販売動向を把握するために標準偏差を活用し、「ばらつき」を視覚化することで、感覚に頼るのではなく客観的な判断が可能になると考えています。これにより、同僚への助言もより具体的なものになるでしょう。 データ分析での新計画 既に明細別の販売実績データを持っているため、各明細の単純平均と標準偏差を求めることを計画しています。標準偏差が低い明細の生産・在庫管理を優先することで欠品を防ぎ、標準偏差が大きい明細についてはその理由を明確にして、将来的な需要予測に役立てたいと考えています。 同僚と知識をどう共有する? 最後に、この考え方を同僚と共有し、部門内で単純平均に依存することの危険性を共に認識するよう努めたいと思います。

データ・アナリティクス入門

データ分析で見つけた新たな視点と仮説の立て方

データ分析の進歩を実感 これまでの実践演習のおかげか、ライブ授業の例題の際、自分が受講以前よりデータの着目ポイントがわかるようになったこと、仮説を複数出すことが怖くなくなっていたことに気付きました。また、ライブ授業の中で出てきた「やみくもに分析しない」という点も、性格上ハマりやすい沼だと思うので、優先順位を考えつつリソース配分を意識しながら分析したいと思います。 ディスカッションでの学び方とは? ディスカッション形式で例題を解くことで、人によってデータの見方や感じ方が違って面白かったです。一人でこっそり分析するよりも、複数人で話し合いながら進める重要性を感じ、実務でも活かそうと思いました。 新規事業におけるフレームワーク活用 新規事業を担当しており、これから多くの施策や企画を立ち上げる機会が増えると思うので、その際には効果的な施策を打ち出すために、問題解決のフレームワークを使って体系的に進めていきたいです。今回の講座で学んだ大きな収穫の一つは「振り返ることの重要性」です。グループワークを通して意見を交換し、その際に振り返りとして自分の考えをまとめる時間があったことが学びに繋がりました。施策を打った後も、その振り返りを必ず行い、次に活かせるようにしたいと考えています。 データをどのように活用すべき? 今後も引き続きデータ分析の講座や研修を積極的に受けたいです。実務レベルでは、常に仮説を持ち、複数の切り口からデータを分析・比較し、結果の検証を行うという順番を意識しています。一部のデータだけを見てすぐに判断しないように気を付けたいと思います。

データ・アナリティクス入門

データ分析で改善への道筋を見つけよう

分析の基礎を見直すには? 分析とは、データの要素を整理し、比較対象や基準を設けて比較することです。目的や比較対象が曖昧だと、分析とは言えません。データを漫然と分析し始める前に、その要素を整理し、明確な目的を持って比較することが重要です。 可視化手法の多様化を 分析の結果を効果的に見せるためには、定量データの種類に応じた加工方法やグラフの見せ方を工夫する必要があります。これまで自己流でデータを可視化してきたこともありますが、さらに多様な手法を学び、見せ方を向上させていきたいと考えています。 採用分析をどう進める? 採用に関わる分析とその対策については以下のように進めます。まず、分析の目的を明確にし、具体的な比較対象を設定することが重要です。例えば、「前週比での応募者数の変化」や「媒体別、フェーズ別の歩留まり」といった視点で分析を行います。これにより、漠然とした分析を避け、得られる洞察が増します。 データを効果的に可視化 また、データの可視化については、週次データの推移を折れ線グラフで表現したり、部署別の採用状況を棒グラフや円グラフで示すなど、データの特性に合った適切なグラフを使います。こうした方法で、データの傾向や課題がより明確になり、効果的な対策の立案に繋がります。 分析のブラッシュアップ方法 今後、目的を複数設定し、分析のための要素分解や比較対象の再設定(過去3年間や各媒体ごとなど)、統計データの整理、分析手法の見直し、結果の行動変容といった点についても改善を重ね、週次で行う分析をブラッシュアップしていきたいと思います。

データ・アナリティクス入門

データ分析で未来を切り拓く方法

分析の前提は合ってる? 「分析とは」「データについて」「ビジネスにおける分析」についての解説を通じて、日常の業務における暗黙の前提が見直される機会となりました。データ分析には、それぞれの経験により前提や基盤となる考え方にバラツキがあることが分かり、データを比較する目的を意識する大切さを学びました。ワーキンググループでは、積極的に意見交換を行い、メンバーからの多くの意見を参考にしつつ、自らの意見も発信できたことに感謝しています。 未来予測をどう図る? 普段の業務では、「分析とは」「データについて」「ビジネスにおける分析」についての振り返りを行い、業務の流れを見直すことができました。社内のKPI達成のために、次月に向けた改善計画を策定していますが、過去の実績結果をもとにした流れだけでは未来予測が考慮されていないことに気づきました。そのため、未来予測をデータとして仮想化し、改善計画に組み込むことで、より効果的なアクションを起こしていきたいと考えています。 改善策はどう統一? 現状では、分析後の改善アクションが各メンバーの個人裁量に委ねられていることに気づきました。この活動を通じて得たデータを元に、ベースラインを見つけることで、他の拠点や部署にも均質な業務品質を展開できる可能性があると感じています。 新たな発見はある? 一方、メタ思考的な視点から、社内に未分析の領域があることも考えられます。これらを確認し、分析する価値が見出された場合には、新たなデータ取得の検討や仮説構築を通じて、具体的な成果を導き出す道筋を考えたいと思います。

データ・アナリティクス入門

仮説で見える新たな可能性

仮説の意義って何? この教材では、仮説の基本的な意義とその分類について学びました。結論の仮説と、問題解決の仮説に分かれており、特に後者は「What?→Where?→Why?→How?」というプロセスで問題にアプローチする点が印象的でした。 検証マインドは必要? また、検証マインドの重要性や、説得力の向上、関心・問題意識の向上、スピードアップ、そして行動の精度向上といった効果も理解でき、実務における検証のプロセスがいかに大切かを再認識することができました。 SNSで成果は出る? 実際のSNSキャンペーンでの活用例として、たとえば「ソーシャルメディアAが最も広告費対効果に優れているのでは?」という仮説を立てる方法が紹介されていました。過去の広告データを徹底的に分析し、どのプラットフォームが最もコスト効率が良いかを比較。その後、小規模なA/Bテストを実施して実際のパフォーマンスを検証し、最も成果が出たプラットフォームに予算を集中させるという具体的な手順です。 フレームワークは有効? さらに、仮説のフレームワークを実業務に当てはめるための補助ツールとして、4P(Product, Price, Place, Promotion)や3C(Company, Customer, Competitor)、そして問題の本質に迫るための5Why(なぜ?を5回繰り返す)といった手法が紹介され、実践的な視点が取り入れられていました。これらのフレームワークは、課題の分析や市場での自社のポジションの確認、そして問題の根本原因の探求に大いに役立つと感じました。

「比較 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right