データ・アナリティクス入門

データの力が導く学びの未来

データ分析はなぜ? 目的達成や問題解決のための有効な手段として、データ分析の重要性を改めて実感しました。適切な分析には、単にデータを眺めるだけでなく、比較を伴うことが必要です。比較する際には、目的から導かれる仮説に基づいてデータ収集と検証を行う方法や、さまざまな視点―インパクト、ギャップ、トレンド、ばらつき、パターン―をもとに状況を把握する方法など、多様な手法があります。グラフや数値、数式などのアプローチによって、得られたデータに説得力を持たせることができます。 情報収集はどうする? また、データ収集には信頼性の高い情報元の活用が欠かせず、単に情報を得るだけでなく、目的に合わせて手を加えることが求められます。実際の現場では、現地調査や見学、アンケートによる意見収集、またはテスト実施など、さまざまな方法を組み合わせることで、多角的に状況を把握し、設問の設計にも特に注意が必要であると感じました。 売上はどう捉える? 業務においては、売れている商品と売れていない商品の把握がまず基本となります。売れている商品の魅力を分析し、その傾向が同じ商品群に見られるのかを比較することで、機会損失を防ぐ狙いがあります。一方、売れていない商品については、取扱いの見直しが必要かどうか、同様にデータを用いて検証することが重要です。 売りたい商品ってどう? さらに、売りたい商品の特徴を明確にするためには、仮説をもって比較対象を選定し、データ分析を実施することが説得力を高めるポイントです。また、食品業界のように実績だけでは見えにくいトレンドも存在するため、ニュースや人々の動向に敏感にアンテナを張りながら、時系列にも留意して傾向を把握する必要があります。 課題解決の本質は何? 仕事の本質は問題解決にあると感じる一方で、ほとんどの業務は何らかのデータに基づいて進められており、その分析が出発点となっています。設問設計には難しさを覚える部分もあるため、より適切かつ効率的な方法について学ぶことができれば、今後の提案や業務改善に大いに役立つと考えています。

データ・アナリティクス入門

仮説検証で切り拓く未来

仮説検証はどう進める? 原因についての仮説を立て、その検証のためにデータを集積することは、とても重要なプロセスです。思考の整理には、フレームワークの3C(Client, Competitor, Company)や4P(Product, Price, Place, Promotion)を活用することで、さまざまな視点から情報を捉えやすくなります。また、データの集積方法としては、複数の仮説を構築し、比較するためのデータを収集すること、さらには反論を排除できる情報まで踏み込むことが求められます。 仮説思考って何? 仮説思考には「結論の仮説」と「問題解決の仮説」があり、特に後者はWhat > Where > Why(原因追及) > How(Solution)の順序で検証することで、その精度を高めることができます。これまでは、業務上の課題に対し、2~3の情報のみで仮説検証を行っていたため、フレームワークや仮説プロセスを十分に活用できず、深堀りができていなかったと感じます。 情報の正確さは? 複数の視点から検証を行うことで、偏りのない包括的な情報が得られると同時に、正確なデータと信頼性の高い情報源へのアクセスの重要性を改めて認識しました。不正確な情報による誤解を避けるためにも、情報の正確さは不可欠です。 過去の教訓は何? 過去の業務を振り返ると、複数のデータベースを活用していたため、データ統合の正確さや集積時点の一貫性が取れていなかったことを反省するとともに、自分のデータ分析に対する知識不足を痛感しました。今後は、正しい仮説を立てることで説得力を持たせ、より正しいアクションへと結びつけていきたいと考えています。 実践で学ぶ仮説は? また、日常のさまざまなシチュエーションにおいても仮説検証を実践し、Week4で習得した知識を無料研修などの実践の場で活用していくつもりです。問題解決の仮説プロセス(What > Where > Why > How)を業務に取り入れることで、仕事の分析や効率、精度の向上につなげていきたいと思います。

クリティカルシンキング入門

思考を広げる3つの視点チャレンジ

具体的表現を目指す重要性とは? ビジネスで目指したいことは、「具体的かつ易しく、わかりやすい文章で語ること」との冒頭の話を聞き、自分がしばしば「抽象的」かつ「キーワード」で説明しがちであると改めて感じました。印象的だった学びは三つです。 まず、①「三つの視」です。これが非常にわかりやすく、「あえて違う自分」を意識することが、多角的な視点で新たなアイディアを生み出す基本的な考え方だと思いました。視点、視野、視座を意識することで、制限を超えた考えを持つことができます。 ロジックツリーをどう活用する? 次に、②ロジックツリーです。思考の偏りを防ぐための便利なツールとして、仕事以外でも様々な状況で使えると思います。ロジックツリーを構築する際にカテゴリー別に整理する作業が思う以上に楽しめました。今後も上手に活用していきたいです。 具体と抽象のキャッチボールを習得するには? 最後に、③具体と抽象のキャッチボールです。この考え方がまだ習慣になっていない中で、次につなげる思考法がわかりやすく提供されました。②と連動するので、これを意識的に取り入れていきたいです。 グループワークを通じて、自分の思考の偏りが理解でき、他者の意見を聞くことで視野が広がりました。アウトプットの重要性を改めて実感しました。 実践的なアプローチとは? 具体的に実践したいことが二つあります。 1. 意思決定時には、多くの関係者に納得してもらえるために「自分への批判的思考」を意識し、三つの視、とりわけ「視野」と「視座」を意識します。これにより、他者にも納得のいく説明が可能になると考えています。 2. スタッフ育成においては、自分の経験だけで指示するのではなく、相手の思考を意識しながら業務を進め、ZOOMなどを活用してスタッフの学びにつなげていきたいと考えます。異なる考え方を意識してスタッフの話を聞き、相手の視点で考えることで、目標達成へと導いていきたいです。 最後に、意思決定時には、頭の中だけで考えるのではなく、一旦書き出して言語化することを心がけます。

データ・アナリティクス入門

分析のアプローチで見えた新たな視点

分析とは何を指す? 分析とは「比較」のことを指します。現状を詳細に比較したり、物事を比較することで、解像度の高い理解や把握が得られます。 グラフや数値の算出方法を理解 今回の学習を通じて、具体的な分析アプローチとしてグラフや数値の算出方法について理解しました。データを算出する際には、代表的な数値(代表値)とデータの散らばり(分布)に分け、それぞれに具体的な手法が用いられます。代表値の例としては、単純平均、加重平均、幾何平均、中央値がありますが、特に幾何平均を用いた売り上げ予測の立て方が印象に残りました。また、分布の例としては2SDルールが紹介され、大枠の範囲を考慮した上で平均値を予想する方法が理解できました。 仕事における分析意識の向上をどう図る? ①分析のアプローチに対する仕事の意識 「分析 = プロセス × 視点 × アプローチ」という基本的な考え方を念頭に置き、これらに漏れがないように資料を作成したり、発言するといった意識を持ち続けます。 ②分析のアプローチに対する業務の行動 現状では単純平均を用いて比較することが多いですが、今後は分布やグラフを用いることで新たな気づきを得られるように努めます。 アプローチ方法をどう定着させる? ⓪分析全体の把握およびアプローチ方法の定着化 学習した「分析 = プロセス × 視点 × アプローチ」について、自分の言葉でまとめました。まずは用語や算出方法を含めて暗記し、アプローチ方法を定着させます。 SNS戦略での分析の改善策は? ①SNS戦略での分析の実施 現状では数値を取って把握することが主体で、十分な分析ができていません。今後は、定義に基づいた分析を実施し、比較が必要な場合には代表値や分布を用いて進めます。 データ分析の評価をどう行う? ②データ分析に関する評価 業務上、データから戦略や仮説を立てることが多いため、データに対して視点を持ったりアプローチを探したりすることで、新たな気づきを見つけ、それを共有します。

マーケティング入門

自己アピールで魅力を引き出す技術

自己アピールは何が難しい? 自己紹介における「自己アピール」について学ぶ機会を得ました。「自分の良さが相手に伝わり、相手が魅力を感じる」ということが、マーケティングに繋がるとは思ってもいませんでした。実際、ブレイクアウトセッションで自己アピールをする際に緊張してしまい、自己紹介のみに終わってしまい、「魅力」を伝えることはできませんでした。それを通じて、自己アピールの難しさを強く実感しました。仕事に置き換えると、商品の「良さを伝える」には「自己紹介」だけでは足りず、顧客に「魅力」として感じてもらうためのじっくりとした考察が必要であると感じました。普段から商品を知り、他社に伝えたいアピールポイントを明確にしておくことが大切です。 マーケティングは何が違う? 次に学んだことは、マーケティングとセリングの違いについてです。現在の仕事に当てはめて考えてみると、出発点は「市場と顧客ニーズ」を考えるマーケティングにあるものの、それが完全にセリングに置き換わってしまっていることに気づきました。今後はマーケティングをしっかり理解し、自然にマーケティングの流れに沿った業務ができるように学んでいきたいと考えています。 魅力はどう伝える? 「伝えたい魅力」を相手に感じてもらうためには、相手を考慮することが重要です。仕事の場面では、まずターゲット層に自社製品のどこが魅力的かを考え、彼らのニーズを満たし、その利益を伝えることで「魅力」を感じてもらうようにする必要があります。また、これを世の中に広めるためには(広告など)、上司や上層部への伝え方も重要です。単に「魅力」を伝えるだけでは足りないため、より深掘りしたマーケティングを学び、答えを導き出したいと考えています。 意識はどこがカギ? 以下の点を意識することで「魅力」を相手に伝えることを自然にできるようになるよう努力します。自社製品の良さを見つけ、他社で売れているものは何か、その理由を考えます。そして、ここで学んだことを一日一度は思い出して意識するようにします。

デザイン思考入門

共感でひらくアイデアの扉

プロトタイプは何故有効? プロトタイプを作成することで、イメージがより具体化され、テストの段階で得られるフィードバックが非常に有益であると実感しました。性格や背景の異なる第三者に評価していただくことで、自分では気づかなかった改善点が明らかになり、製品やサービスのブラッシュアップに大いに役立つと感じました。 テストの流れはどう? また、テストのプロセスは、普段実施しているレビュー作業に似た面がありました。レビューでは、作成した提案書や設計書に対して指摘を受けつつ改善を重ねるため、限られた目的や範囲の中で行われる点が共通しています。一方、デザイン思考における「共感」「課題定義」「発想」「試作」「テスト」の各プロセスは、業務で何気なく行っている点とも重なっており、日常の仕事に応用できる部分が多いと改めて認識できました。 デザイン思考の柔軟性は? デザイン思考では、基本のプロセスの流れがあるものの、非線形に繰り返す柔軟性が大きな魅力だと感じました。議論が行き詰まってしまうリスクもありますが、「共感」や「協働」を重視することで、しっかりとコンセプトを捉え、効果的にアイデアを育てることが可能です。人間中心のアプローチやビジュアライズ・プロトタイピング、そして共感の連鎖といった視点が、より良い成果につながると理解しました。 多様な意見はどう? さらに、他の受講生が作成したプロトタイプを通じて、多様な背景を持つ人々の意外なアイデアに触れることができたのは、大変参考になりました。一人では気づけなかった発想が生まれ、異なる視点を取り入れてアイデアを育てることが、新たな解決策へとつながると実感しました。 新ビジネスは何故大切? 新たなビジネスプランを検討する際、リーダーシップやチームビルディング、経営戦略、マーケティングなど現実的な調整が必要となる中で、まずはアイデアの創出が何より重要であると再認識できました。デザイン思考で学んだ手法は、普段の業務においてもそのまま活用できる貴重なものだと感じています。

データ・アナリティクス入門

フレームで切り拓く問題解決

分析で何が分かる? この講義では、業務の問題解決のために「分析」を徹底的に学び、質の高い意思決定スキルを向上させることがテーマでした。分析とは、比較を行うことにより現状を理解する手法であり、問題解決に取り組む際は、まず解決すべき問題を明確にし、状況の全体像を把握する必要があると感じました。 仮説はどう練る? さらに、問題点の仮説を立て、どのようなデータを用意し、どのように加工して何を明らかにするかというストーリーを作ることが重要です。闇雲に分析を進めるのではなく、グラフを活用するなどして、周囲への説明が分かりやすくなる工夫が求められます。 どんな枠組みを活かす? また、今回の講義では様々なフレームワークを活用する手法についても学びました。ロジックツリーを用いてMECEに問題を絞り込む方法、定量分析の視点として何を比較対象にするかやどのグラフを使用するか、さらにデータを平均値や中間値に集約して分析する方法など、具体的なアプローチが紹介されました。相関係数や度数・時系列・パレート分析といった数字に基づいた分析の手法や、3Cや4Pの軸で仮説を広げる方法にも触れ、ビジネスにおける仮説には結論の仮説と問題解決の仮説の二種類があることも学びました。 実践でどんな変化? 私は営業支援の仕事に従事しており、データ分析を通じた得意先への課題解決提案を今後も継続していく考えです。これまで自己流の分析やストーリーの立て方では、汎用性に欠ける面やサポートのしづらさを実感していましたが、本講義で学んだフレームワークや定型の分析手法を取り入れることで、体系的に仕事を進められるようになりました。特に、若手メンバーへのサポートにも大いに役立てたいと考えています。 今後の対策は? ただ、問題解決の4つのステップに対して、それぞれに合った分析手法やフレームワークの整理がまだ十分にできていないと感じています。今後は、皆さんと議論しながら確認する機会を持ち、より深く理解を深めていきたいと思います。

リーダーシップ・キャリアビジョン入門

リーダーシップを再定義する方法

リーダーシップは誰でも発揮できるのか? 今週の学びを振り返って、リーダーシップは役職や地位に関係なく、誰もが発揮できるものだと感じました。具体的には、会議の進行役を務めたり、懇親会の日程を調整したりと、さまざまな場面でリーダーシップの発揮が求められます。 理想のリーダー像をどう描く? 自身が目指すリーダー像を描くことも大切です。例えば、「散歩のつもりが富士山に登ってしまった」ということはないように、なりたいリーダー像を具体的に思い描き、目標として設定することが必要です。実際にリーダー像を紙に書き出し、明確化することが重要でしょう。 リーダーに必要な三要素とは? リーダーとは、行動、能力、意識の3つの要素で構成されています。氷山に例えると、水面に出ている行動が見える部分であり、水中にある能力と意識が土台となっています。これらの要素のバランスが重要で、状況によって偏りが生じることがありますが、リーダーシップを狭く捉えないよう意識しましょう。 仕事現場でのスキルギャップの影響は? 仕事の現場を振り返ると、スキルギャップが自信のなさを生み、行動を鈍らせることがあります。また、能力に自信があるときには意識を疎かにし、相手への配慮が不足することがあると気づきました。この反省を踏まえ、リーダーシップを発揮する際には、バランスの取れた氷山の絵を描けているか考えてみたいと思います。改善を進める際は、なぜ現状を続けているのかを理解し、相手の意見をヒアリングすることが重要です。 今取り組むべき具体的な行動は? 具体的に今から取り組むべき行動は、以下の3つです。まず、周囲の協力が必要な場面では、業務全体の背景や目的を整理し、理解してからコミュニケーションを始めます。次に、一方的に自分の考えを押し付けず、相手の疑問や不安を聞き出し、障壁を一つずつ取り除く姿勢を持ちます。最後に、自分の能力不足を認めつつスキルを高め、必要に応じて周囲の協力を求める勇気を持ちます。見栄やプライドは必要ありません。

クリティカルシンキング入門

問いの力で生産性アップと新ビジネスアイデア創出

問いの形にする重要性とは? イシュー特定のためのポイントとして、「問いの形にする」ことの重要性を具体例を交えて理解することができた。自身の業務で問題解決や新たな取り組みに向けた課題設定の場面で考えが滞るのは、問いの形にできていない場合が多いと感じた。問いの形にすることで具体的に考えることができ、仮説が導き出せる。この仮説を検証し、その結果を評価・解析することで、PDCAを確実に回すことができるようになる。 ピラミッドストラクチャーの活用法は? また、ピラミッドストラクチャーを用いた論理構成の組み立て方や、「SO WHAT」「WHY SO」の視点で自身の論理構成をチェックする方法を型として理解できた。これにより、これまで何となくやっていた内容を整理し、他者への説明や資料作成の場面で仕事の生産性を向上させることができると感じた。 フレームワーク活用で何が変わる? さらに、新たなビジネスアイデアを考える際には、これまで活用してきたフレームワーク(P.E.S.T、3C、5フォースなど)から導出した事実や結論をビジネスアイデアの論拠として説明するため、ピラミッドストラクチャーを用いて論理を構成する。それをもとに、「MECEになっているか」や「さらに考える余地はないか」などを検討し、結論―根拠―それを支える事実という構成で相手に伝わる資料・話し方を組み立てる。 イシューの適切性をどう確認する? 表出している問題の解決や新たなことを考える際の課題設定の各場面においては、常に「今解くべき問いは合っているか」を自問する。また、適切でないイシューから出したアウトプットは、報告を受ける相手にとって価値のないものであることを肝に銘じる。 部下と共にイシューを磨くには? 最後に、自身のイシュー設定力を向上させるために、部下との対話の中で相手が「イシューを捉えているか」を確認する。捉えられていない場合には、全体課題の中のどの部分を捉えて話しているのかを常に考え、自身として考える機会を増やすよう心掛ける。

クリティカルシンキング入門

論理で切り拓く未来の自己発見

論理の意義は? 論理的思考の重要性はこれまでも漠然と感じていましたが、今回の学びでその具体的な理由を初めて理解できました。自分の考えを整理するだけでなく、正確な意思決定や今まで気づかなかったアイディアを発見するためにも、論理的なプロセスが不可欠だと強く実感しました。 思考の癖はどう? また、自分だけでなく他者にも特有の思考の癖があることに気づかされました。そのため、物事を客観的に見る視点が求められることも大きな学びでした。今後は、自分の思考パターンに注意を払い、より客観的かつ冷静に判断できるよう努めたいと思います。 癖に気づく瞬間は? まず、自分の思考の癖に気づくことの大切さを実感しました。先日の講義での演習を通し、何かを突然問われたときに、過去の経験に基づいて反射的に答えてしまう傾向があると認識しました。物事を客観的に考えるには、自分や他者の無意識の癖を理解し、それを意識的に修正することが必要だと感じました。 前提を疑う意義は? 次に、前提を疑う姿勢の重要性を体感しました。どれだけ客観的に考えようとも、前提がずれていれば議論は的外れになります。仕事の中での判断の際、「その前提は正しいのか」「周囲と共通の認識が取れているか」といった視点を常に持つよう心がけたいと思います。 考えの伝え方は? 最後に、論理的に整理する力と自分の考えを言葉にする力が求められるという点です。自分の中で考えが整理できても、言葉としてしっかり伝えなければ他者と共有することはできません。この点においては私自身も苦手意識があり、今後は客観的に整理した考えを分かりやすく伝えるスキルを身につけていきたいと考えています。 判断のコツは? クリティカルシンキングの重要性を学びながらも、日々の業務で過去の経験に基づく迅速な判断が求められる場面も多いと感じます。それぞれの状況に応じたアプローチについて、他の受講生とも意見交換しながら進めていければと思います。

デザイン思考入門

できなくてもまずは見せる力

プロトタイプの意義は? 今週の学びは、プロトタイプを作り共有する力を実感した点にあります。頭の中で考えているだけでは見えてこなかった課題や視点も、形にして見せることで他者からのフィードバックが得られ、自分ひとりでは気づけなかった点や改善につながる方向性が浮かび上がりました。特に、「完成していなくてもいい」、「とにかく見せて意見をもらう」というスタンスが、新しい価値や学びを生み出すことに大きく寄与していると感じました。デザイン思考の「つくって考える、対話して深める」姿勢は、変化が激しく正解が一概に決まらない現代の仕事において、大きな武器になると実感しています。 提案の伝え方は? 私の仕事では、データ活用やDXを推進する中で、提案内容の伝え方が常に課題となっています。例えば、勉強会の構成やダッシュボードの設計、展示会のコンテンツなどを一人で考え抜くのではなく、早い段階で仮の構成やプロトタイプをチームや対象者に見せ、反応を確認することで、よりニーズに沿った形に近づけることができると感じました。このプロセスは、関係者との共創を促すきっかけともなり、プロトタイピングが単なる手法以上の意味を持つことを教えてくれました。 改善の具体策は? 今後は、以下の3点を意識して実践していきたいと思います。まず①「たたき台」を意図的に作ることです。提案資料やイベント構成は、一人で完成させる前にドラフトを共有し、意見を募る仕組みを取り入れます。次に②フィードバックをもらう文化を育てる点。同僚や他部署とプロトタイプを見せ合い、意見交換をすることで、互いにアイデアを磨き合う習慣を作りたいです。そして③受けた反応をもとに柔軟に変更すること。まず出してから修正するといった循環を業務の進め方に定着させ、迅速な改善を図ります。 これらの取り組みを通じ、完璧なものを最初から求めるのではなく、共により良いものにしていくというマインドセットをチーム全体に広げていきたいと考えています。

データ・アナリティクス入門

数字と式が開く学びの扉

数式への意識はどう? やっと、数式や数字の取り扱いが登場して安心しました。データ加工は、数字、図、数式を扱うものであり、普段はなんとなく利用していたものの、特に数式については意識して使っていなかったので、この機会にしっかりと意識できるようになりました。 代表値の使い分けは? 代表値については、平均値、中央値、そして最頻値の3種類があり、高校で学んだ記憶があります。状況や特徴に合わせて適切に使い分けることが必要だと感じました。 散らばりをどう捉える? また、散らばりに関しては、分散、偏差、標準偏差という概念があります。これらのイメージがつかめると、グラフ作成時の種類の選択や切り口の検討に役立つと考えています。正規分布や、偏差を標準偏差に変換する方法を理解できれば、さらに活用の幅が広がると感じました。 応用範囲はどう広がる? これらの手法やツールは、あらゆる業務や自分自身の行動パターンにも応用できると考えています。新しい仕事で具体的に何をどこまで行うかはまだ決まっていませんが、逆にどのような状況にも対応できるはずです。以前の仕事では、過去のデータや何かとの比較で数%の違いを強調していたことがありましたが、散らばりが大きい場合、その違いが意味を成さないこともあるため、今後は数字を見る際にその点を意識していきたいと思います。 習熟のための練習は? まずは練習として、代表値をいろいろと算出しながら使い方に習熟していきたいです。数式は単に暗記するのではなく、意味や算出方法を理解し、それを活かすことで活用の幅を広げることを目標としています。以前、統計学の教科書を購入して半分ほど学び直した経験があるため、改めて復習しながら残りの部分も学習していきたいです。 散らばりから何を探る? また、散らばりの大小からどのような検証ができるのか、またどんな示唆が得られるのかをさらに深めたいと思います。最後に、統計検定にも挑戦する予定です。
AIコーチング導線バナー

「業務 × 仕事」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right