戦略思考入門

定量と定性、価値のバランス探求

定量的評価の重要性とは? 優先順位を考える上で、時間あたりの利益額などの定量的評価項目を取り入れることが重要だと感じました。これが判断基準として利用しやすいと感じた一方で、利益などの目に見える価値だけでなく、見えない付加価値を一律に切り捨てることにもなりかねないので、注意が必要だと思います。定量的価値と定性的価値のバランスを取るために、価値創造ストーリーというような大きなストーリーの軸があった方がいいのではないかと考えています。 グループ会社でのリソース配分は? グループ会社の今後の事業展開について、事業の選択と集中、リソースの配分方法にこの考え方を活用したいです。ただし、その議論を行う前に、その会社がどのような会社でありたいのかという軸を明確にしておかないと、上述のバランスを取るのが難しくなりそうです。この部分についてのコミュニケーションも必要だと感じました。 中期経営計画での対話のコツは? また、中期経営計画のコミュニケーションにおいて、これらに関連した問いを発することが重要です。限られた時間の中で、個別の担当者や経営層とのコミュニケーションを層別に行い、議論すべき内容を明確にして話し合うことが、より時間を有効に活用するために有益だと思います。

アカウンティング入門

数字で解明!経営の未来を握るアカウンティングの力

アカウンティングの重要性とは? アカウンティングは、自社の経営が順調かどうかを数字で判断するために必要不可欠です。現在、私は特にB/S(貸借対照表)の理解が不足していると感じています。P/L(損益計算書)と組み合わせて、今の経営状態が十分であるのか、さらに改善が必要なのかを判断したいと考えています。 経営判断にどう活かす? 具体的には、税理士との話し合いの場での活用を考えています。また、日々の経営判断においては、新年度の給与賃金や役員賞与の決定に影響を与えることになります。今、私が最も重要だと考えている経営課題は、新規雇用に使える予算を具体的に把握することです。特に、遠方からの雇用に際し、住宅補助を提供できる経営状態にあるのか、それとも難しい状況なのかを、以前のように曖昧な方法ではなく、数字でしっかり理解しておきたいです。この点に関して、実際に書き出してみることで納得しました。 学んだ内容をどう活用する? 今後は、学んだ内容を自社の過去1-3期の決算書と照らし合わせながら具体的に分析を行い、すぐに経営判断に活かす必要があります。そのため、学んだことは可能な限り速やかに実践し、頭の中でイメージするだけでなく、実際に書き出してまとめるように心掛けます。

データ・アナリティクス入門

実務で輝く!数値戦略の新発見

代表値の選び方は? データの特性に合わせた代表値の取り方を誤ると、算出された数値が意味を持たなくなることを再認識しました。成長率などの数値結果に触れる機会はあったものの、その計算に幾何平均が用いられていることは、私にとって新たな学びとなりました。 標準偏差の使い方は? また、これまでグラフなどのビジュアルに頼ってデータの散らばりを把握していたため、標準偏差を用いて数値として表現するという手法に触れることができたのは非常に興味深かったです。 幾何平均で何が変わる? 加重平均や中央値は、データの検証において従来から活用していたものの、売上の伸長率を算出する際に幾何平均を用いる方法は、早速実務に応用していけると感じました。さらに、標準偏差を算出することで、データのばらつきを具体的な数字としてイメージし、説明に説得力を持たせる工夫を進めたいと考えています。 実務でどう活かす? 具体的には、部門の各営業メンバーの業績比較や、セグメント別の業績比較において個々の成長率を算出し、その結果を問題点の洗い出し資料として活用したいです。また、商品別の売上推移に成長率を適用することで、優劣を明確化し、問題への対策検討に役立てたいと考えています。

アカウンティング入門

貸借対照表が教える経営の極意

貸借対照表の見方は? 普段あまり目にすることのない貸借対照表ですが、「どのように資金を調達し、どのように活用したか」が読み取れるため、経営の体質を理解する手掛かりになると感じました。また、事業内容により、貸借対照表の構成が大きく異なる点も理解できました。たとえば、鉄道会社では固定資産が多い一方、ソフトウェア会社では流動資産が多い傾向があります。私の勤務する製造業では、各種部品を加工する機械や組み立て機械、工場そのものなど、固定資産が非常に多いという特徴があります。 投資の目的は? さらに、投資に関しては、「どのような価値を提供するために投資を行うのか」を明確にする必要があります。自社が提供する価値を最大限に発揮できるよう、資金調達や投資方法を慎重に検討することが大切だと感じました。 競合の傾向は? まずは自部門だけでなく、競合他社の貸借対照表も確認し、各社の傾向を把握することで、貸借対照表に慣れることを目指したいと思います。 専門の分析はどう? また、経理部門とのディスカッションを通じて、専門家がどのように貸借対照表を分析しているのかを理解し、そこから導き出される企業戦略についても、自分で学びながら理解を深めていきたいと考えています。

クリティカルシンキング入門

データが示す問題解決のヒント

データの切り分けは? データから課題を抽出し、論点を明確にする構造的思考力の重要性を改めて認識しました。これまでの可視化されたデータ作成方法を復習しながら、「問題→要因分析→解決策提案」という一連の流れが実践的であると実感しました。特に、データの分類軸の切り方によって見えてくる内容が大きく変わる点は、今後の業務において有効に活用していきたいと考えています。 担当業務の見直しは? 私の担当する業務は、直接的に顧客データや売上データを扱うものではなく、事業やプログラムの実施および運営が中心です。現在、開始から3年目を迎えるプログラムのさらなる拡充を目指し、これまでの参加者の所属先、部門、所在地、業種などの特徴や、分野別の分析、そして他の類似プログラムとの比較など、さまざまな視点からの検証を進めたいと思います。 改善方法はどうする? また、自身が携わるプログラムの進捗や課題について、これまで限られた範囲で数値化するに留まっていましたが、今後は問題点を明確にし、MECEを意識した分類とグラフ化によって、限られたスペースにより多くの情報を効率的に伝えられる方法を再検討する所存です。作業中に方針がブレないよう、常に意識を高く保ちながら取り組んでいきます。

データ・アナリティクス入門

分けて比べる!分析の真髄

4段階は何を示す? 4段階の仮説→検証→改善策立案を、具体例を交えて説明していただき、各段階での重要なポイントが明確になりました。自己流や独学で試行してきた私にとって、とてもありがたく、有意義な時間となりました。 分け比べで何が分かる? 初回から印象に残ったのは「分けて比べる」という考え方です。繰り返し実践することで、分析の本質を実感できるようになりました。 データ選択はどう考える? また、社内で適切なデータを選び出す際には、データが目指すべき姿を示しているのか、あるいはデータ自体が何を表しているのかをしっかりと見極め、指標として活用する重要性を感じました。眺めるだけでなく、常に目的意識を持ってデータに向き合うことが大切です。 自社データ整備はどう? まずは自社データの整理を行い、そこからカテゴライズやインデックス化を推進し、目的別にすぐ利用できる状態を整えたいと考えています。また、データの整え方や代表値の種類、グラフ化、ピボットテーブルの加工方法など、基礎的な手法を部内にレクチャーすることで、自分自身の理解不足や弱点を洗い出し、互いに教え合いながら、数ヶ月後にはみんなが同じ目線で分析結果を議論できる環境を作り上げたいと思います。

データ・アナリティクス入門

ゴール重視からの脱却と新たな挑戦

場合に応じたゴール設定の重要性 業務において、MECE(Mutually Exclusive, Collectively Exhaustive)の原則は理解していたが、実際にはゴールを重視し過ぎていたことに気づかされました。また、What Where Why Howといったフレームワークも頭では理解していたものの、実際の活用がうまくできていなかったと反省しました。これにより、もれなく分析する難しさを改めて認識しました。 漏れのない分析方法とは? 私は業務プロセスの変革や改善のアセスメント、プロジェクト推進を担当しています。そのため、網羅的な影響の確認と、漏れのない分析が重要です。特に抽出する方法については慎重に整理し、誤ったアウトプットを防ぐことが必要であると再認識しました。 ヒアリングシートをどう改善する? ヒアリングシートについては、ロジックツリー化してテンプレートとして使用していましたが、これを見直すことにしました。具体的には、粒度の確認を行いながら、シートを整理することが重要だと考えています。そして、現状、あるべき姿、理想とする姿を正確に区分けすることで、段階的なスケジュールの精度を高め、プロジェクト推進につなげたいと思います。

アカウンティング入門

図解で広がる学びと戦略の扉

図式の効果は? PL、BS、CSをつなぐ図式は非常に参考になりました。各要素の関係がわかりやすく示されており、文字情報だけでは得にくい理解が深まりました。テキスト情報も大切ですが、図式を効果的に用いることで、知識の習得が一層進むと感じました。今後は、すべての要素を図式化できるよう、各要素のつながりを意識して学習していきたいと思います。 知識活用はどう? 知識そのものは、事業構造や実態の把握に基づいた戦略の提言や予算策定などに活かしていきたいと考えています。その際、利害関係者に分かりやすく伝えることが重要だと感じています。また、部下のレベルアップのために、自分自身が良き指導者となり、効果的な教え方の方法論を身につけていくことも目標です。 議論の進め方は? さらに、業務上で体験した新たな知識を、AIを利用して検証することが好きです。物事の本質を把握し、その意味をAIとのディスカッションで深めることは非常に有効であり、楽しい取り組みです。知らないことや本質、定義が曖昧な知識に気づいた際は、すぐに議論を行うようにしています。これまでは単発的な知識に焦点を当てていましたが、今後は体系化や方法論についても積極的に取り組んでいきたいと思います。

データ・アナリティクス入門

小さな実験から大きな発見

原因分解はどうする? 問題の原因を明らかにするためには、まずプロセスに分解することが重要です。また、解決策を検討する際は、複数の選択肢を洗い出し、根拠をもって絞り込むことが求められます。 テスト実施はどう? ABテストは、条件をできるだけ揃えて比較する有効な手法です。実施する際は、まず目的や仮説を明確にし、検証項目をしっかり設定することが大切です。さらに、テストは1要素ずつ行い、複数の要素を同時に検証する際は他の手法の検討が必要です。加えて、同一期間で実施することでテスト要素以外の環境要因の影響を最小限に抑えることが可能となります。 検証法はどう考える? 広告効果の検証においては、CVポイントやKPIに応じて適切な検証方法が変わります。実際にABテストを実施する場合もあるため、どのポイントを検証するかという仮説設定が非常に重要です。 効果はどこで現れる? 現在、広告効果の検証と分析に活用しているソリューションがあり、さらに新たなソリューションの開発も進めています。両方のソリューションを同時に走らせることで、どのKPIやCVポイントで新しいソリューションの効果が発揮されるかをABテストによって検証する絶好の機会だと考えています。

データ・アナリティクス入門

問題解決のための仮説構築法を再確認

仮説構築の重要性を学ぶ 今週は仮説構築の方法を学びました。仮説を立てる際には、複数の仮説を立て、その仮説同士に網羅性を持たせることが重要だと感じました。特に印象に残ったのは、仮説を立案しても都合の良い情報だけに頼らないことです。この点で、チームメンバーにも受講してもらいたいと強く思います。 ミニマム検証の重要性 仮説を立てた後、ヒアリングやアンケートなどを通じてミニマムに検証を行い、そのプロセスを繰り返すことが新規事業の場でも求められます。このことを再確認できました。 検証結果報告の注意点 現在、10月の実証実験に向けて、検証目的や結果の仮説を立案しています。検証結果を報告する際には、都合の良いデータだけを取得し、反論を排除することは絶対に避けたいと感じています。そのため、3C分析や4P分析といったフレームワークを活用し、再度検証結果の仮説立案を試みる予定です。 仮説立案を継続する意義 日々の業務においては、改めて仮説立案を実行し、問題解決の仮説について考えていきたいと思います。具体的には、what、where、why、howといった視点から仮説を再度見直すことで、自分の業務に対する関心や問題意識を向上させようと考えています。

データ・アナリティクス入門

多角的視点で得た新たな発見

フレームワーク活用のコツは? 課題を考える際、初めから新たに考えるのではなく、まず適切なフレームワークに当てはめることで、情報の漏れなく抜け漏れを防ぎ、新たな観点を追加することが可能です。フレームワークを活用することで、論点の整理がしやすくなります。 仮説はどんな視点で? 仮説を立てるときは、単一の固定観念にとらわれず、複数の仮説をさまざまな切り口から整理することが求められます。こうした多角的な視点から検討することで、仮説の網羅性が向上し、より効果的な対策が検討可能となります。 情報収集の手順は? データ収集のプロセスでは、誰にどのように情報を求めるかが非常に重要です。単に各種資料に頼るのではなく、実際に知識を有する人を特定し、確認の方法を明確にすることで、比較や反論の排除にも努めるとよいでしょう。 施策実践の始め方は? 施策を検討する際は、目的に適したフレームワークを調べること(例としてChatGPTへの問い合わせ)から始め、複数の角度で仮説を定義する必要があります。また、データ収集においては、各種資料の作成者を特定し、作成の意図や補足情報、意見などアドバイスを求めながら取り組むことで、より充実した施策の策定が期待できます。

データ・アナリティクス入門

仮説と検証で切り拓く成長

問題発見はどう進める? 問題の原因を探るため、まずプロセスごとにアプローチする手法を学びました。その中で、A/Bテストを活用し、仮説を立てた上で実際に検証を重ねる方法が効果的であると理解できました。また、総合演習を通して、これまでの学習内容を振り返り、自分の知識を整理する貴重な機会となりました。 仮説検証は効果的? データ分析においては、目的を明確にし、分析に入る前に仮説をもつことの重要性を再認識しました。分析プロセスを着実に進めるとともに、効果的な切り口でデータを把握することが求められると感じています。取り組んでいるサービスのユーザ活用場面を拡充するためには、利用シーンをプロセスに分解し、それぞれを検証した上で改善策を策定することが必要です。 分析の進め方は? 具体的には、各プロセスに対して適切なデータを条件を揃えて抽出し、抜け漏れなく検証を進めることが求められます。改善策を検討する際には、複数の選択肢を根拠に基づいて検討し、基準を設けることで効果的な施策に絞り込むことが重要です。また、分析作業は複数のメンバーで進めるため、作業開始前に目的や意味合いを共有し、各メンバーが同じ認識で取り組むことにも留意すべきだと実感しました。

「活用 × 方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right