デザイン思考入門

共感でつなぐ学びの軌跡

共感の価値は? デザイン思考における「共感・課題定義・発想・試作・テスト」の5つのステップについて、2点の学びがありました。まず、共感の重要性です。共感とは単に同意することではなく、お互いが認識できる共通の「何か」を見出すことだと感じました。 非線形の魅力とは? 次に、これらのステップは非線形に繋がっているという点です。特定の順序にこだわるより、行きつ戻りつのプロセスを経ることが、各ステップが互いに影響し合い、より良い思考とプロダクトにつながると実感しました。 意見共有は難しい? また、システム開発の上流工程では、プロジェクトメンバー間でどのように意見を交わし、定義を共有するかが非常に重要です。システム思考がその施策として大きな役割を果たす可能性はあるものの、実際にどの程度効果を発揮するかはまだ未知数です。一方で、プロジェクトメンバー間で「共感」がどこまで実現できるのか不安に感じることもあります。これまでの経験から、どうしても「同感」に偏ってしまい、ほぼ100%の合意が必要とされる傾向があるように思えるからです。すなわち、MUSTとWANTの区別なく、すべてが必要とされる状況が根付いているのではないかと考えています。 今後の課題は? この点については、今後学びながら整理し、業務に活かしていきたいと考えています。具体的には、まずは受講生の仲間に「共感」についてヒアリングを行い、意見を共有してみたいと思います。ワークは課題中心であるため、私個人の興味本位で話を進めるのではなく、オフ会や自主的な懇親会などの機会を利用して課題提起を試みるつもりです。また、実際の仕事の中で共感と同感の線引きがどのように行われているのかも観察しながら検証していきたいと考えています。

戦略思考入門

自己成長を促すビジネス視点の活用法

本質を見抜く力とは? 本質を見抜く力やメカニズムを捉える力は、ビジネスやプライベート、そしてキャリアにおいて極めて重要です。例えば、「返報性」の概念は、交渉やコミュニケーションの際に相手の意図を見極める上で役立ちます。この原則を活用することで、場当たり的な判断を避け、より再現性のある行動や判断を下せるようになります。 ビジネスでの理論活用法は? ビジネスでは、規模の経済や習熟効果、範囲の経済性、ネットワーク効果などの理論が重要です。特に規模の経済は交渉や社内調整において役立ちます。市場の指数関数的変化を理解し、これを活用することで、競争力を持つ企業へと成長できます。また、テクノベーションがビジネスに及ぼす影響を理解することもポイントです。 家族や友人との関係にヒント? プライベートな場面でも同様に、家族や友人とのコミュニケーションにフレームワークを用いることで意見の相違を解消できることがあります。子供の成長や学習においては、指数関数的変化を意識して柔軟に対応することが大切です。例えば、家電の活用や家具の選定においても同様の考え方が適用されます。 キャリアビジョンの設計法? キャリアにおいては、自分の特性を理解し、それに基づいたキャリアビジョンを設計することが求められます。習熟効果や範囲の経済性を利用し、自分のスキルを最も効果的に発揮できる環境の特定を進めることで、成長や成功に向けた次のステップを考えることができます。 実践を通じた成長の鍵は? 最終的に、これらの知識とスキルを実際に手を動かして試し、経験を積むことが重要です。具体的な行動とともに、時代やビジネス環境の変化にも柔軟に対応していくことが、自己成長や目的達成への鍵となるでしょう。

データ・アナリティクス入門

平均だけじゃ語れない真実

平均値だけで判断? 平均値は、データのばらつきを反映しないため、平均値近辺に多くの数値が存在するとは限らず、両極端な数値が混在している場合もあります。そのため、平均値だけに頼ると正確な分析が難しくなることがあります。 標準偏差はどう見る? 標準偏差を加えることで、数値の分布やばらつきを把握することができ、平均値と合わせてデータの傾向を見極めるのに有用です。実際、ある施策の効果検証で前後の数値を単に比較した際には、有意な変化や傾向が見受けられず困惑した経験があります。しかし、標準偏差を算出して分布図に落とし込めば、より明確な傾向が掴めたかもしれないと感じました。 代表値の使い分けは? また、代表値の使い分けにも工夫が必要です。単純平均の他に、値ごとに重みを付けた加重平均、成長率や比率を評価する際に有効な幾何平均、そして外れ値の影響を受けにくい中央値を適宜使い分けることで、より正確な傾向分析が可能となります。 具体例はどう見る? たとえば、男性の育児休業取得日数については、年間の平均値だけでなく、外れ値として極端な値が含まれる場合には中央値を用いて経年の傾向を把握します。さらに、法改正の影響で急増している取得率の増加率を幾何平均で算出し、次年度以降の予測やKPIの設定に活かすといった工夫が重要です。 現業務を再確認? 現在の担当業務においては、従業員の健康診断データ、施策実施前後の変化、女性管理職比率の推移、男性育休取得率の推移など、今回学んだインパクト、ギャップ、トレンド、ばらつき、パターンといった視点およびグラフ、数字、数式といったアプローチを用いることで、見落としがちな傾向や変化を改めて確認することが求められます。

データ・アナリティクス入門

分析手法でビジネス課題を解決!

問題発見に必要な分析とは? ビジネス上の問題や課題を発見するためには、影響の大きい部分から分析を始めることが重要です。そのため、現状を可能な限りヌケなくモレなく構成要素に分解する必要があります。特に事業収益を分析する際には、損益計算書が優れた例となり、経費がMECE(Mutually Exclusive, Collectively Exhaustive)に分解されています。 顧客属性分析で成功するには? 私の業務であるプロモーションにおいても、顧客属性や売上の構成を分析し、ターゲットとすべき顧客セグメントを抽出するのに役立ちます。売上や利益を伸ばすためにどのセグメントに焦点を当てるべきかという課題に対して、この方法は非常に有効です。しかし、広告媒体の効果検証には、ユーザーのタッチポイントが単一媒体に留まらないことから、複雑な分析が必要であるため、必ずしも適しているわけではありません。 ターゲティングの優先順位は? 具体的な分析手法としては次のようなものがあります。まず、店舗単位で顧客と問い合わせユーザーの住所や所属の件数を割り出し、ギャップが多いほど見込み顧客が多いと考えられるため、これを検証します。また、顧客の所属数と自社客のシェア率を把握し、優先的に取り組むべき所属を抽出します。ただし、店舗からの距離、競合の立地、ターゲット層の志向などにより、シェア率が低いセグメントが必ずしも優先順位が高いとは限らない点に注意が必要です。 Webと商品の相性をどう見るか? さらに、Web上での申し込み傾向を分析し、特定のカテゴリーで商品とWebの相性が良いかを分析することも重要です。これにより、より効果的なプロモーション戦略を立てることが可能になります。

データ・アナリティクス入門

悔しさを力に変えた成長の軌跡

社員評価はなぜ低い? 最近、私は経営層に対して、社員の口コミ評価が低いという問題に関する提案を行いました。分析の結果、「社員の相互尊重」、「社員の士気」、「人材成長への長期投資」という3つの項目が他の要素と相関しており、影響度が高いことが明らかになりました。また、これらのスコアは他社と比較しても低い状況です。こうした背景から、組織のソフト面(例えば、コミュニケーションの不足など)が問題の原因ではないかと考えました。 実施後の効果は? 提案内容では、1on1研修の実施や外部の相談窓口、メンター制度の導入などを挙げ、各施策実施後にエンゲージメントサーベイを通じて効果を定量的に検証し、次の対策を検討する流れを示しました。具体的な施策の順序については意見をいただきましたが、前段階の詳細な分析やストーリー構築が好評を得たため、今後の企画に繋げていく意欲が湧いています。 学びはどう生かす? また、今回の学びを振り返る中で、いくつか印象深い点がありました。 ①【悔しさをバネに復習&活用】 最終ライブ授業で理解が追いつかない部分が多く、情けなさと悔しさを感じながらも、その感情を忘れずひとつひとつ丁寧に復習し、実務で活用していく決意を新たにしました。 ②【仲間とのつながりを大切に】 ここで出会った仲間との別れは寂しさを感じさせますが、いつかまたどこかで再会できるよう、日々変わらず努力していきたいと考えています。 ③【学びを伝え、学び続ける】 社内で自主的に学びの普及活動を行う中で、一緒にチャレンジしてくれる仲間が増えていることに喜びを感じています。私自身も、今後さらにクリティカルシンキングの講座を受講し、知識やスキルの向上を目指していく予定です。

マーケティング入門

差別化の鍵は「体験」にあり!

モノと体験の違いは? 今週は、「モノ」と「体験」の違いについて学びました。競合他社との差別化を図るためには、オンリーワンの存在になることが重要です。そのためには、商品やサービスを単に売るだけでなく、体験を通じて差別化することが必要だと理解しました。 商品の価値は何か? 商品の価値には、機能的な価値だけでなく、情緒的な価値も含まれます。リラックスできる、楽しい、テンションが上がるといった顧客の感情に影響を与えることが大切です。ポジティブな体験を通して顧客をファンにすることで、関係を強固なものにしていけるのが理想だと感じました。 体験はどう変わる? また、体験は繰り返すことでその価値が減少することも学びました。この点については確かにそうだと思いますが、常に新しい体験価値を提供し続けるのは大変だとも感じます。 顧客体験設計とは? 一方、Webの世界では、新しいサイトやアプリを構築する際に「顧客体験設計」を重視します。私の業界では、商品の開発よりも、それを売ったり利用するためのWebアプリを作ることが主な仕事です。購入までの導線やビジュアル、色調、マイクロコピーに気を配り、わかりやすさやスムーズさ、便利さを提供することを心がけています。しかし、ユーザーとの感情を結びつける体験ができていないことに気づきました。 新サービスの感情は? 金融という特性上、これまでは情緒的な価値に目を向けたことがなかったため、自社開発の新サービスに対して、どんな感情を持ってもらいたいのかを考え、開発チームと話し合いをしたいと思います。競合他社との差別化では、機能面だけで勝負するのが難しいと感じていたので、これからは体験という広い視点で考えていきたいです。

マーケティング入門

訪日観光アプリ成功の鍵を探る

観光案内アプリのセグメンテーションとは? 観光案内アプリの事業化を検討する過程で、特に注意が必要だと感じたのは「セグメンテーションの切り口」です。訪日外国人旅行客を優先すべき顧客層として仮定しましたが、最終的には国内旅行者にも対象を広げたいと考えています。このとき、以下の変数を明らかにし、「購買行動に差が出る切り口を選ぶ」ことが重要だと学びました。 - 人口動態変数(例:年齢や性別) - 地理的変数 - 心理的変数(例:趣味、志向) - 行動変数(例:使用頻度) 6R基準でのターゲティングの重要性 ターゲティングについては、6Rという評価基準を新たに知りました。特に、Rankでは市場規模に加え、イノベーターやアーリーアダプターといった火が付きやすい層を選ぶ必要があると再認識しました。 - Realistic Scale - Rate of Growth - Rival - Rank(優先順位、影響力の強さを考慮) - Reach - Response これらの基準は、市場の魅力と自分たちが勝ち残れるかどうかを比較しつつ選びます。 データを基にしたセグメンテーションプロセス セグメンテーションはデータに基づいて行います。まず、「購買行動に差が出る切り口」を仮説立てし、それに応じてデータを取得します。その後、ターゲティングやポジショニングを以下の手順で進める計画です。 1. セグメント別の市場規模、成長率を推定する 2. 推定結果に優先順位をつける 3. 最も優先する市場について競合との差別化を仮決めする(ポジショニング) 4. 実際に検証する この一連のプロセスによって、より的確で効果的なアプローチが可能になると考えています。

データ・アナリティクス入門

未来を切り拓く!仮説思考の力

仮説はどう整理する? 複数の仮説を立てる際には、その網羅性と分類が重要です。過去の失敗を分析する場合や、将来の事業の成功を予測する場合には、3Cや4P分析を活用して仮説を立ててみると良いでしょう。 データ収集はどうする? 仮説を裏付けるためのデータは常に存在するわけではありません。必要な情報を収集する場合、誰に何をどのように聞くべきかを慎重に考える必要があります。都合の良い情報だけを集め、他の可能性を排除しないようにする意識も大切です。この姿勢は「関心や問題意識のないところに仮説は生まれない」というマインドセットにも通じています。 市場特性の見極めは? 3Cや4Pの視点で現在のビジネス状況を正しく理解することが不可欠です。しかし、市場や業界、製品が特殊な場合には注意が必要です。例えば、医療業界ではエンドユーザーが患者であり、購入決定権を持つのは医療者であるケースがあります。広告制限のある製品については、適切な顧客設定と検証が必要です。自社だけでなく、関わるグループ施設市場を含めた3C、4P分析も有効です。 3W1Hで速さは向上? 仮説の3W1Hを繰り返すことでビジネススピードが向上します。過去と未来の仮説を分けて分析し、サイクルを回すことが必要です。たとえば、大型コンペの参加が有効だったか、その前後の効果や成功の分析、次回の見込みや採用率の変化が周囲に与える影響の予測を行います。 Excel作業改善のコツは? データの比較基準が異なる場合、データの取得、加工、単位や見え方の統一が課題になります。実際の分析開始前の準備段階でのExcel作業に多くの時間を費やすことが課題となっているため、この点のスキルアップが必要です。

クリティカルシンキング入門

データ分析で未来を切り拓く学び

なぜ情報を分解するのか? 状況を解像度よく理解するためには、情報を分解することが重要です。特に、数字はグラフ化が可能なため、非常に有効な手段となります。分解を行う際にはいくつかの注意点があります。まず、加工の仕方としては、表に追加する欄を考えたり、相対値を計算したりするなどです。また、グラフを作成することで視覚を働かせることも効果的です。 多角的に見るための視点とは? 次に、情報の分け方についてですが、単に機械的に分けるのではなく、仮説を立てて特に影響力の大きい要素を優先して分解します。また、同じ状況に対して複数の観点から分解することも重要です。ある一つの視点だけでは状況を完全に把握できないことがあるため、他の視点も試すことが肝要です。 問題箇所を特定する方法は? さらに、MECE(Mutually Exclusive, Collectively Exhaustive)を意識して分解することで、問題箇所の特定を助けます。目的を明確にし、わかりやすい形で層別、変数、プロセスに分解すると良いでしょう。また、ロジックツリーを使って、仮説を立てた上でインパクトの大きい要因から切り口を考えます。この過程でアイデアを広げる際にもロジックツリーは有用です。 入学者分析で何が得られる? 具体的な応用として、入学生徒の性別、学力、地域、求めるものなどの傾向を分析することが挙げられます。これにより、入試広報活動を改善し、学校が求める生徒像に合致する生徒を獲得することができます。また、普段から数字をグラフ化する習慣をつけ、ロジックツリーなどを利用して考えを図式化することも有効で、完璧さを追い求めるよりも、実践と反復練習を重視することが大切です。

クリティカルシンキング入門

問いで拓く学びの世界

どんな問いを見つける? どのような問いを立てるかが、その後の課題設定や解決策の方向性を決定づけるため、非常に重要なポイントと感じています。問いの立て方ひとつで、取り組むべき課題や解決方法が大きく変わることを実感しています。 本質の問いは何? また、本質を捉えた問いとは、なんとなく考え始めるのではなく、常に問いを意識し、組織全体で共有されるべきものです。かつては「問い」がうまく立てられないと感じていましたが、どの問いも「不正解」であるわけではなく、より最適な問いを見つけるプロセスの一環であると理解するようになりました。人は無意識のうちに考えを進め、問いの本質を見失いがちである点にも気づきました。 仕事ではどう問いかける? 実際の仕事では、抽象的な目標が示される中で自分の課題ややるべきこと、解決方法を見つける過程で、まずは課題の整理、原因分析、そして「なぜなぜ」のアプローチを実践するようになりました。こうしたプロセスを通じて、解決策や具体的な打ち手が見えてくると感じています。 問いにじっくり向き合う? 問いに向き合う際は、すぐに「これだ!」という結論に飛びつくのではなく、じっくりと時間をかけて向き合うことが大切だと実感しています。また、問いかけ形式で具体的に考えることや、グラフや視覚化、表の加工といった手法を用いて、根拠をしっかりと押さえながら解決策を見出すよう努めています。 評価で問いは正しい? たとえば、人事考課の時期に自己評価や上司からの評価を考える際、期初の目標設定の段階で正しい問いがすでに組み込まれていることに気づきました。この経験から、正しい問いの設定が評価にも大きく影響するという点を再確認しています。

データ・アナリティクス入門

ロジックツリーで見える問題解決の新視点

問題の本質はどこ? 問題解決には2つの種類があります。1つは正しい状態に戻すための問題解決であり、もう1つは目標に到達するための問題解決です。これらの解決を図るためには、まず問題の所在を明確にし、具体的な問題箇所を特定することが必要です。自分が「これが原因・問題だろう」と考えていても、予期せぬ原因や見逃している問題が存在することがあります。これを防ぐためにロジックツリーを用いることが有効です。 影響はどう見える? また、原因や問題が業務や経営方針にどの程度の影響を及ぼしているのか、ライバルと比較して適切な条件になっているのか、全体の進行の中で重視すべき事象なのか、といった点も考慮に入れなければなりません。 説明は伝わる? 業務上、特定のスタッフに業務負荷が偏ってしまうといった問題を解決する際、原因をなんとなく感覚的に見つけ、「これが原因だろうからこうすれば良いだろう」と進めてきました。しかし、それを周囲に説明し納得してもらい、動いてもらうためには、今回学んだロジックツリーを活用することが効果的であると感じました。 戦略はどこに? 現在注目される訪日旅行において、どのエリアを強化するのか、どのような戦略を取るべきかを考える際、現状やこれまでの訪日旅行のトレンドや傾向についても考慮したいと考えます。 改善策は何だ? 業務改善においては、ロジックツリーを活用して、問題の本当の原因を他の管理職と共に追求します。その上で、人員を増やすべきか、業務フローそのものの効率化を図るべきかについて議論します。また、今期の方針として、訪日旅行に関するどのようなデータが必要かを調査し、その中から必要な情報を選別する予定です。

クリティカルシンキング入門

データ分解で見つける新しい視点

データ分解の必要性は? 今週の学習では以下の点について考察しました。まず、データを分解する際には、さまざまな視点からの切り口を持っておくことが重要です。データの分解方法や細かくするやり方によって、データの見方は大きく変わり、傾向や仮説が立てやすくなります。また、多面的な視点でデータを分解することも必要です。MECE(漏れなく、ダブりなく)を用いて検証することは基本ですが、さまざまな角度から分析することの重要性を感じました。さらに、データの可視化も重要であり、グラフなどを使うことで傾向の見方が大きく変わるため、積極的に用いていきたいと考えています。 業務へどう活かす? これを自分の業務に当てはめると、以下のようになります。データを単に表にまとめるだけでなく、詳細に分解したりグラフ化することで、関連性の洗い出しに役立てられると考えます。具体的には、開発中の製品の物性データ解析を行い、改善に必要な影響因子を洗い出したり、売上と在庫のデータ推移を国やユーザーごとに解析し、仮説立てに活用したりします。また、文章データを整理し、プロセス解析と分類分けによる分析を行います。 分析に多角視点は? データ分析や分解については、自分だけで行うのではなく、他の人にも確認をお願いし、異なる視点や着眼点を参考にして分解のバリエーションを増やすよう心がけます。データを取得する際も、従来の方法にとらわれず、「本当に必要なデータなのか」という視点を意識して行います。過去のデータとの関連性も考慮に入れ、有用なデータ取得を目指します。結果に対しては、「本当か?」といった問いを繰り返し、別の視点での傾向の可能性を確認することも重要です。

「影響」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right