データ・アナリティクス入門

現実と夢のギャップを楽しむ学び

目的意識はどうする? 常に目的を意識することが大切です。ありたい姿を明確にし、現在地を把握した上で、そこからのギャップを見出すことが出発点となります。その差分に対して必要な課題を洗い出し、解消のための具体的な打ち手を決定し、実行計画を立てて自律的に取り組むプロセスは、学習や自己成長の場面でもシンプルに機能します。 アウトプットの考察は? また、様々なアウトプットに触れる際には、どのデータがどのような目的で、どのように加工されているのかを考えることが重要です。これにより、他者のアウトプットから自分なりの工夫やアイデアを吸収し、活かすことができます。 顧客提案をどう見る? 顧客提案の際には、次のシナリオ設定のフレームを基本として実施します。まず、目標や目的の目線を合わせ、現在地を確認し、目指すゴールを共有します。次に、課題を共有し、解決手法の提案とその効果検証方法を確定させ、具体的な打ち手を実施します。最後に、全体を振り返ることが、次への改善につながります。 自己評価は何が肝心? さらに、期ごとの自己の振り返りや査定評価資料の作成にも、同じフレームワークが生かせると考えられます。日々の努力の積み重ねが明るい評価へとつながることを意識し、着実に成果を上げることを目指しましょう。

データ・アナリティクス入門

要素分解が開く学びの扉

分解と分析はどうする? 分析を行う際は、まず対象を要素に分解することが重要です。ロジックツリーやMECEの考え方を活用し、問題解決のステップとしてWhat、Where、Why、Howに分けることで、あるべき姿と現状、そして現状と理想のギャップを正確に把握できるよう心がけています。 店舗のギャップは? また、実務の現場では、宿泊客のデータ比較や社内の研修で、グループ内の各店舗のありたい姿を設定し、現状とのギャップを店舗ごとに分析する取り組みが行われています。このような分析により、各店舗の改善点が明確になり、実効性のある対策が立てられるようになっています。 研修資料はどう整える? さらに、新入社員向けの研修資料作成においてもMECEを意識し、内容を整理することが求められています。現状、社内向けの資料が十分に整備されていないため、今回学んだことを活用して、より実用的で分かりやすい資料作りに努めています。 口コミ低評価をどう克服? 口コミ評価が低い店舗を訪問する場合、現状とあるべき姿のギャップを3つ以上洗い出し、具体的な改善点を見つけることが求められます。初回の動画視聴だけでは本質を理解しきれないため、何度も視聴しながら自分の手でメモを取ることで、理解と記憶の定着を図っています。

データ・アナリティクス入門

仮説とデータで磨く業務分析の極意

仮説で何を探る? 仮説を立てることは、原因を特定しやすくするための大切なプロセスです。複数の仮説を用意することや、それぞれに網羅性をもたせることで、様々な切り口から問題にアプローチできます。仮説を設定した後は、目的に沿ったデータ収集が必要となり、比較用のデータや反論を排除するための情報をまとめることが求められます。業務における仮説は、ある論点や不明点に対する暫定的な答えとして機能し、問題解決や結論導出のための道筋となります。 直感は信頼できる? 私自身は、予実管理の分析依頼に対して即座にデータに手をつけ、結論を出すスタイルで業務を進めています。しかし、今回の学びを通して、直感だけに頼った分析では非効率なプロセスになりがちであると感じました。それに加えて、分析の過程を言語化していないため、チーム内での情報共有が十分に行われていない点も課題として浮かび上がりました。 効率改善の方法は? 今後は、仮説を立てることで分析の焦点を明確にし、必要なデータの収集方法を検討することで全体の効率を高めたいと考えています。また、業務プロセスをエクセルなどに落とし込み、仮説からデータ収集までの流れを標準化する取り組みを進め、関心や問題意識を共有することで説得力のある分析を目指していきたいと思います。

デザイン思考入門

失敗も踏み台に!シンプル開発の現場

プロトタイピングって何? プロトタイピングでは、①目的を明確にする、②適切な要求を抽出する、③適切な時間を投入するという点を学びました。大学の授業は1科目が15回で構成されているため、毎回がプロトタイピングの検証の繰り返しといえます。大幅な修正を毎回行うと、逆に学生の混乱を招く恐れがありますが、これまで以上に学生の反応に敏感になり、改善を重ねられると感じました。 なぜ凝りすぎる? プロトタイプの作成過程では、どうしても機能を増やしたり、完成品に近づけたいという衝動に駆られます。しかし、ユーザーからフィードバックを得るという本来の目的を考えると、あまり凝りすぎないことが大切だと思いました。実際、下手な漫画を用いたところ、その下手さが逆に興味を引き、フィードバックを得る結果となった経験があります。講座で紹介されていたように、本質的な機能に絞り、“Simple is best”の姿勢で臨むことが重要だと感じます。 本音を出す環境は? また、プロトタイプによる検証は、自分のアイデアが外部の批判にさらされるという意味でも、デザイン思考の醍醐味を味わえるプロセスだと思います。ただし、場合によっては意見を控えるユーザーも存在するため、誰もが本音で意見を言える環境作りが必要だと強く感じました。

データ・アナリティクス入門

実務で磨く!アウトプット思考の極意

実践的分析はどう進む? データ分析に関する実践的かつ体系的なアプローチを学ぶことができ、非常に実りある体験でした。講義では、What、Where、Why、Howの各ステップを意識しながら、網羅的に仮説を洗い出すことの大切さを学び、単なるやみくもなデータ分析とは一線を画す考え方を身につけることができました。 完成像をどう描く? また、アウトプットのイメージを初めから持つことにより、分析の質とスピードが劇的に向上する点にも気付きました。実務では、しばしば情報が断片的に扱われがちですが、最初から完成形を描くことで、全体の流れや数字、目的に合致したグラフ作成、さらには数式化まで一貫して対応できるようになりました。 仮説検証で何変わる? さらに、店舗オペレーションの検証や改善を行うチームでの業務において、さまざまなフレームワークや5つの分析視点を活用し、仮説と検証を徹底する重要性を再認識しました。自分自身のアプローチに偏りがあったことを改善し、チーム全体でナレッジを共有しながら、組織力を向上させる意識が高まりました。 理論と実践の架け橋は? 全体として、実践的な分析方法を通じて、理論と現場の架け橋となる知識とスキルを確実に身につけることができ、大変満足しています。

クリティカルシンキング入門

読ませずに伝わる!情報整理術

情報伝達の極意は? 文章やスライドを通じて情報を他人に伝える際には、「情報を探させないこと」と「読んでもらえる工夫をすること」が重要であると印象に残りました。普段、読みやすいドキュメントの作成を心掛けてはいますが、今回のGAiLではグラフやスライドの改善点について模範解答と異なる部分が何度かありました。この経験から、同じ情報でも読み手によって理解が異なることに改めて気づかされました。 ドキュメントはどう完成する? 私は日常的に社内向けの企画提案書や報告書作成、全社への周知文の作成を行っています。今回学んだ内容を意識して、よりわかりやすいドキュメントの作成に取り組みたいと考えています。スライドや周知文に必要な事項は記載しているものの、社員が理解できていないケースもあるため、このような問題を解消できるよう今回の学びを活用していきます。 レビューのポイントは何? また、自身や部下が作成した文章をレビューする際には、アイキャッチ、文章の硬軟、そして読みやすい体裁を重視し、「情報を探させない」ようになっているかを確認するようにしています。さらに、部下には、この内容を自己レビュー時のチェックポイントとして活用するよう指示しています。時間が許す限り、手を抜かずに丁寧に作成したいと思います。

データ・アナリティクス入門

分析で得た洞察を行動に変える方法

売上予測の計画をどう立てる? 売上予測においては、過去の事例や他社、海外の事例と比較しながら計画を立てることが重要です。実績が更新されるたびにその計画との比較を通じて事業の進捗を評価し、改善策を議論しています。このことから、「分析は比較なり」という定義はやはり真理だと感じています。また、扱うデータの理解を深め、その知見をステークホルダーと共有するためには、アウトプットの整理と見せ方を適切に選ぶ必要があります。 分析計画表はどのように工夫する? 分析を進める際には、毎回分析計画表を記載し、目的に合わせた分析手法を選択して言語化した上で作業を進めています。しかし、どのデータをどのように加工して用いるかにはあまり触れていないことが多いと感じました。そのため、テンプレートを見直し、自分以外の人がその分析の思考プロセスを理解しやすくするよう工夫が必要です。 新たなデータ分析のアプローチは? 具体的には、現在のテンプレートでは実際に分析に用いたものしか記載されておらず、選択可能なデータの種類とその選択理由、分析手法の採用理由を明確化するような構成に変更する予定です。新たなデータを分析する場合、そのデータの特性や限界を適切に確認し、分析結果とともに共有することが重要だと考えています。

クリティカルシンキング入門

問題解決の道を切り開く分解術

問題解決の鍵は何か? 問題解決を行う際には、物事を分解することが重要です。分解する際は、まず全体を定義し、漏れや重複がないように意識することが求められます。 分解方法のバリエーション 分解の方法には、層別分解(例えば、「○○」と「○○以外」)、変数分解(「売上=単価×客数」)、プロセス分解(「入店前、入店後」など)といった切り口があります。もし分解の方向性に迷ったら、「いつ」「だれが」「どのように」といった視点から考えてみることが効果的です。 クライアント課題の深掘り法 また、クライアントの課題の根本原因を探る際には、MECEで分解を行い、特に重要なポイントを追求することが役立ちます。さらに、クライアントに提供している制作物を目標にさらに近づけるため、改善のポイントを洗い出すことも重要だと感じます。 データ加工へのチャレンジ 私はデータの加工が得意ではないため、仮説の幅を広げる練習をしているところです。3つの分解方法を利用して目の前の課題を分解してみても、選択肢がMECEに則っておらず、苦戦しています。しかし、一人で煮詰まってしまった時には、ChatGPTを活用しながら、反復練習を繰り返し続けています。

マーケティング入門

顧客の本音を探るテクニックを学ぶ

顧客の真のニーズとは? 顧客の真のニーズを探り出す方法を学べてよかった。新事業において仮説を検証するためにヒアリングなどはよく実施するが、質問項目や聞き方によっては答えを誘導してしまい、真のニーズを引き出すことは中々難しいと感じている。また、現在携わっている新規事業のプロジェクトが、顧客の立場や視点に立って考えることができていないことに改めて気づいた。今後は、カスタマージャーニーを実践し、本当に価値のある事業作りを目指していきたい。 行動観察で何が見える? 行動観察やデプスインタビューは、実際に価値検証を行う際に有効であると感じた。自分が顧客として考えたときに、どのような企画・事業であればビジネスとして成立するかを改めてチームメンバー全員で考えていく必要があると感じたため、これを実践していこうと思う。 今後の具体的な行動は? 具体的な行動としては以下の3つを考えている: 1. チーム内でディスカッション時間が明らかに少ないため、上司に相談して改善を図る。 2. 顧客のペインポイントが何であるのかを改めて議論し、現在の方向性が正しいかを確認する。 3. 新規の顧客に対するヒアリングを実施する。 これらの取り組みを通じて、真に価値のある新規事業を作り上げることを目指していく。

データ・アナリティクス入門

フレームワークで広がる学びの世界

フレームワークは有効? 仮説を立てる際には、漠然と挑むのではなく、3Cや4Pといったフレームワークを活用することで、見落としがちな側面まで広く網羅できると実感しました。ゼロベースの発想だけでは時間がかかる恐れがありますが、フレームワークを利用することで、アイディア出しの足がかりとなり、効率を大幅に向上できると感じています。また、仮説思考を取り入れることで、ビジネスにおける検証のマインドが育まれ、問題意識の向上や行動の精度アップにつながる点も理解できました。 業務改善のカギは? 臨床検査業務の改善を3Cの視点で考えると、競合と自社が重要なポイントとなります。競合には、外部委託先や他の医療技術職が挙げられ、外部委託先については、価格面での戦いでは優位性を欠く一方、他の医療技術職とは、チーム医療におけるタスクシフトや共有の貢献度が評価される点が異なります。一方、自社は、依頼された業務を迅速かつ可能な限り受け入れる姿勢を強みとし、組織全体への貢献を目指すべきだと考えました。また、4Pの観点からは、精度の高い検査結果をリーズナブルに提供することが求められています。各技師が担当できる検査の幅を広げることで、固定費の削減と、それに伴うリーズナブルな検査提供に貢献できるのではないかと感じました。

データ・アナリティクス入門

プロセス分解で見つけたヒント

なぜ分解して考える? プロセスを分解して問題の本質に迫る手法について、非常に分かりやすい事例から学ぶことができました。特に、採用プロセスの一部である中途採用面談や、顧客への提案における在庫差異の問題解決に、このアプローチを活用できると感じています。また、ABテストにおいては、条件をできる限り同一とし、検証範囲を絞るための仮説設定が重要である点も再認識しました。 採用面談、何が問題? まず、中途採用面談に関しては、自身が関与する採用活動において、プロセスのどの部分で問題が発生しているのかを明確にするため、面談調整に要する日数と採用結果の情報を人事部から収集することを検討しています。この情報をもとに、面談調整に時間がかかる原因を特定し、改善策を提言することで、採用率の向上を図ることができると考えています。 在庫の差異、どう解決? 次に、顧客への提案、特にシステム間の在庫差異に関する課題解決では、既に現状の業務プロセス分析は実施していますが、課題が発生しているプロセスの粒度が細かすぎるため、より単純化した形で説明する必要性を感じました。問題となりうる箇所を明示した上で、システム改善または運用プロセスの変更のいずれかを提案し、顧客にとって最適な解決策を提示していく考えです。

データ・アナリティクス入門

プロの視点で分析スキルを業務に活かす方法

フレームワークの重要性を実感 前期の戦略入門でも感じたことだが、まずはフレームワークや型にはめて物事を考えることの重要性を改めて実感した。分析においてはWhat, Where, Why, Howのステップが基本であり、日々の業務においてもこの点を意識して進める必要があると強く感じた。今週の演習を通じて、これまでの経験や感覚に頼っていたことを再認識したので、今後の学習期間中はこの点を意識して取り組んでいきたい。 大幅に下回る結果を改善するには? 現在の業務において、前年以上の売り上げを上げている施設や地域がある一方、前年を大幅に下回る施設や地域も存在する。このような場合において、問題や原因を特定し、その要因を探り、どのように改善に繋げていけるかを追求するために、今週の学びを早速活かしていきたいと考えている。 MECEを使った分析の取り組み 今週の学びの一つであるフレームワークを自分のものにするために、現状の業務に適用してみることにした。週次で分析を進めている特定の地域がなぜ前年を下回る結果となっているのかを題材に、MECE(Mutually Exclusive, Collectively Exhaustive)を意識しながらロジックツリーを活用して分析していきたい。
AIコーチング導線バナー

「改善」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right