データ・アナリティクス入門

仮説から未来を切り拓く学び

比較を正確にするのは? 分析は、単に項目を比べるだけではなく、具体的な要素を明確にすることで、より良い意思決定へと繋げる重要なプロセスです。比較対象となる項目以外の条件を可能な限り同一に揃えることで、正確な比較が可能となるため、「Apple to Apple」の状況が求められます。データ分析に用いる情報には、定性データと定量データの両方があり、それぞれの特性を活かしながら分析を進めることが必要です。 仮説の立て方は? データ分析のプロセスでは、まず目的を明確にし、その目的に沿って「仮説」を立てることが大切です。仮説を基に、どの項目をどのように抽出し、どんな結果が想定されるかを考えることで、分析の方向性が見えてきます。また、グラフの作成時には、何を強調したいかという視点から見せ方を工夫することで、情報が整理され、分かりやすいプレゼンテーションが実現できます。 顧客データの意義は? 私は食品メーカーの営業職として、自社の売上や利益のデータはもちろんのこと、主要なお得意先である小売業やドラッグストアなどの顧客データも分析しています。膨大な情報の中から、目的に沿った仮説を立て、抽出すべき項目を明確にすることで、単なるデータの羅列ではなく、得意先の課題やチャンスを具体的に示す資料を作り上げることを意識しています。このプロセスを通じて、課題解決への道筋を明確に示し、より良い提案につなげることが求められています。

データ・アナリティクス入門

目的で変わるデータ分析の極意

目的は何だった? 今週の学習を通じて、データ分析は単に数字を集める作業ではなく、まず「何を目的に、どの項目と何を比較するのか」を考えることが重要だと強く実感しました。これまでの私は、手元にあるデータをただ集計し、そこから何か分かるのではないかと考えることが多かったのですが、その結果、正しい判断に至らない場合があると気づかされました。 本質は見えてる? 特に印象に残ったのは、分かりやすいデータだけに頼る生存者バイアスの考え方です。自分自身も、分析しやすいデータに引っ張られがちであったため、「本来見るべきものは何か」という視点を持つ必要があると痛感しました。 課題は何だろう? これまでは、商業部門や関係部署からの依頼で内容を十分に整理せずに作業を進めることがあり、その結果、意図とのズレや手戻りが生じることもありました。今回学んだ「目的と比較を意識したデータ分析」は、現在担当している業務にそのまま活かせると感じ、作業開始前の進め方を見直す良い機会となりました。 対策はどうする? 今後は、依頼を受けた段階で「何を明らかにしたいのか」「どの期間や条件と比較するのか」を必ず確認し、目的とゴールを整理してから作業に取り組むようにしていきます。一方で、実務では依頼元自身が目的を明確に言語化・整理できていないケースも多いと感じ、この場合、どこまでこちら側が踏み込むべきかという課題も感じました。

クリティカルシンキング入門

フラットな視点が拓く未来

データの説得力は? データに基づいて論理的に導き出された方策には、数ある手法の中でも特に説得力があり、実践する際に効果が期待できると感じました。 本質はどこにある? チームで分析を進める際、議論が拡散して本来の問いを見失わないよう、得られた事実に対して丁寧に目を向けることが重要だと実感しました。実際の業務では、頭の中にある既定の原因や方策にとらわれず、フラットな姿勢でデータと向き合う意識を持つ必要があると感じています。 仮説の進め方は? また、全ての要素を網羅的に分析し、一つひとつ順番に確認する方法は非効率であるため、仮説を立てた上で優先順位を意識しながら進める手法の重要性を改めて認識しました。 満足度の裏側は? 年に一度、事務局を務める競技会の満足度アンケートを通じ、数値では明確に分解できないフリーコメントを整理・分類することで、参加者の満足や不満を体系的に把握することに努めています。その結果からイシューを特定し、真の原因へアプローチする方策を検討する意識が養われました。 チーム視点は整う? さらに、日常業務においても、チームメンバーとイシューに対する視点を合わせ、要素を丁寧に分解することが大切だと考えています。問いかけを通してメンバーの意見を引き出し、原因や方策を決めつけることなく、常にフラットな視点で課題に向き合う姿勢を心がけたいと思います。

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

マーケティング入門

悩みをチャンスに変える視点の力

ペインの視点は何故大切? ペインポイントをゲインポイントに変換する視点の重要性を学びました。顧客自身が気づいていなかった、しかし実際には非常にありがたいと感じる欲求を捉えることが鍵であると理解しました。カスタマージャーニー全体を振り返り、各段階でのペインポイントを探るとともに、その解決策を提案することがマーケティングの本質であると再確認できました。 課題はどう見えている? また、クライアントや候補者それぞれのカスタマージャーニーで発生するペインポイントを具体的に洗い出すことが有効だと感じました。例えば、クライアント側では、求人の発生、現場との採用スペックに関するヒアリング、エージェントの発注、推薦、面接から内定に至るまでの各プロセスで、それぞれ異なる課題が浮き彫りになります。内定段階での辞退や、推薦における的外れな提案、さらには依頼に対する不十分な対応や無駄な打ち合わせの時間が大きなペインとして挙げられます. 候補者の悩みは何だろう? 一方、候補者のカスタマージャーニーでは、スカウトの受領、エージェントとの面談、応募、面接、内定獲得、入社といった流れの中で、面接対策の不十分さや、自身のメリットが十分に伝わらないことがペインとして感じられる点が目立ちました。各プロセスでの課題を具体的に整理することで、より良い解決策を見出し、双方にとって満足度の高いプロセスの構築に繋がると学びました。

リーダーシップ・キャリアビジョン入門

伴走と気づきで育むリーダー

リーダー育成はどう進む? 全体を振り返ると、リーダー育成に対して十分な力を発揮できていなかったと実感しました。「背中を見せて育つ」や「伴走するから学ばせる」といった指導方法を採用していましたが、実際には部下に任せきっていた面があったと痛感しています。 抽象課題は何を示す? また、リーダーシップやコミュニケーション能力といった抽象的な課題について、具体的に何が求められるかを言語化できていないことが問題点として残っています。たとえば、リーダーとして何ができれば良いのか、またコミュニケーション能力が高いとはどういう状態なのか、必要なスキルは何かといった点を体系的に理解し、不足している知識を認識してインプットすることが必要だと感じました。 部下のモチベーションはどう引き出す? さらに、部下が持つモチベーションやインセンティブを正しく理解した上で、適切に動機づけを行えるよう努めたいと思います。画一的な指導方法ではなく、パスゴール理論を活用して個々に適した指導を行い、マインドセットの変革を促すアプローチを目指します。加えて、1on1や面談などを通してキャリアアンカーの考え方を共有し、それぞれの価値観や内面を明らかにしていくことも重要だと考えています。 学びをどう整理する? この6週間、さまざまな方との意見交換を通じて多くの学びを得ることができ、大変有意義な時間となりました。ありがとうございました。

クリティカルシンキング入門

論理と実践で挑む成長ストーリー

視点をどう広げる? 先入観や過去の経験に左右されず、偏った考えに陥らないことが非常に重要だと感じています。常に多角的な視点で問題にアプローチするため、MECEの原則に従って要因を整理し、重複なく抜け漏れのない議論を進める必要があります。また、問題解決のプロセスでは、目的意識をしっかり持つことが基本です。目的を見失うと、本質ではなく細部にとらわれがちになるため、常に問い続ける姿勢が真因に迫るための鍵となります。そして、学んだことを実践し、反復することで自分自身を鍛え上げることが大切だと考えています。 業務推進はどう進む? 現在、私が取り組んでいる業務推進上の問題や課題の解決活動においても、これらの考え方を実務に活かしていきたいと思います。現状の組織運営上の課題を明確にし、その本質を突き止め、再発防止策をしっかりと構築する仕組み作りに努めています。改善メンバーとの日々のディスカッションを通じ、ロジカルに問題に向き合う環境を創出することで、組織全体の進化と若手メンバーの育成にも繋げていきたいと考えています。 クリティカル思考はどう? また、業務にクリティカルシンキングを取り入れることは必要だと認識しています。実際に導入する際、業務全体の時間が一時的に増加する可能性はあるものの、問題の本質にたどり着き、解決および再発防止が実現できれば、その増加は一時的なものであると自分なりに結論付けています。

クリティカルシンキング入門

深掘りで変わる!バイアス解消術

ライブ授業で得た気づきとは? ライブ授業の実習を通じて、自分の思考にバイアスがかかっていることを実感したため、物事を深掘りすることの重要性を改めて感じました。MECE(Mutually Exclusive, Collectively Exhaustive)やロジックツリーといった手法を学び、それを自分のものとして使いこなせるようになることで、より深く物事を考え振り返る行動につなげることができると考えています。 提案資料にどう活用する? 社内システムの担当として、ITを駆使し事業課題を解決するシステムの企画や立案を行う際には、一度自分の考えを止めて客観的な視点を取り入れ、提案資料にその考えを反映させるよう努めています。そうすることで、より説得力のある資料を作成できるのではないかと考えています。また、部下との評価面談では、クリティカルシンキングを活用して部下の考えを引き出し、自分の意見も効果的に伝えることができると思っています。 判断を支える習慣とは? 自身で何らかの判断を行う際には、なぜその判断に至ったのか自問する習慣を身につけることが重要です。その問いかけをロジックツリーなどに書き起こして思考を整理します。これを実践するために、PCの付箋アプリにこれらの行動を記載して常に視界に入れるようにし、ロジックツリーなどで思考を整理するためのメモ用紙を常に手元に置いて実践していきたいと考えています。

データ・アナリティクス入門

平均に惑わされない、本質を探る

平均値だけで信頼できる? 平均値だけに頼ると、誤った仮説に導かれる可能性があると学びました。今後、データに向き合う際は、代表値だけでなく散らばりにも十分に気を配ることを心がけます。 どうやって指標を使い分ける? 具体的には、単純平均、加重平均、幾何平均、中央値といった指標を意識して使い分け、状況に適した分析を行いたいと考えています。 SNS分析はどう進める? また、SNSコンテンツの制作分析においては、各カテゴリによって、反応が良い投稿でもインプレッションが伸びにくい場合や、逆に反応が少なくともインプレッションが増えるケースが存在することに気が付きました。このような現状から、再現性を持ったPDCAサイクルの実現が課題であると感じます。 どの手法で再現性を高める? そこで、各コンテンツカテゴリについて平均インプレッションとユーザーの反応(例えば、いいね数など)の相関や散らばりを分析することで、再現性の高い投稿カテゴリを見つけ出せる可能性があると考えています。 具体的な分析アプローチは? 具体的なアプローチとしては、まずコンテンツカテゴリの整理を行い、外れ値を除いた各カテゴリごとの平均インプレッションを調査します。次に、平均インプレッションとユーザーの反応数の相関関係や、データの散らばりについても検証します。特に、散らばりが小さいカテゴリは、再現性を高めやすいと捉えています。

クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

デザイン思考入門

全体を捉える登山の教訓

知識の罠に気づくか? 業務系システム開発では、顧客の業務知識が不可欠です。多くの経験を積んでいくうちにさまざまな知識を吸収できる一方、顧客の抱える課題を定義する際、その知識が逆に思い込みに陥る原因ともなりかねません。実際、ある講義での体験では、登山中の一場面だけに目を奪われ、準備や登山後のプロセスという全体像を見失ってしまったと感じました。このように、顧客のことを考えているつもりでも、自分の頭の中で構築したイメージにとらわれやすいという問題意識が生まれました。 顧客の本音を引き出す? 新規案件のヒアリングでは、課題定義を意識しながら、まず顧客が困っている事柄を書き出してもらい、自分なりに整理してみました。講義で学んだ一次コーディングを参考に、何も知らないという姿勢で質問を続けた結果、顧客自身が「当たり前」と考えている部分を改めて考えさせられる場面が増えました。対話を重ねることで課題が可視化されるプロセスを実感し、より具体的に問題に向き合う大切さを学びました。 全体を見渡すには? 登山の例においても、単に登山中だけにとらわれず、準備やその後の過程も含めた全体を見渡すことが必要だと感じました。どのような課題定義においても、まずプロセス全体をしっかりと考えることが、より正確な理解へとつながると実感しています。今後はこれらの気づきをもとに、広い視野で課題解決に向き合っていきたいと考えています。

デザイン思考入門

受講生が感じたデザインの魅力

デザイン思考の基礎は? 6週間にわたり受講したデザイン思考の入門講座では、これまで漠然としていた基礎体系が明確になり、その各ステップや方法論に触れることができました。従来からあるKJ法も実は発想の一手法であり、シンプルながら発想の視点を巧みに整理するSCAMPER法の学びも非常に興味深かったです。 従来手法との違いは? ただ、従来の問題解決手法との違いや、どこがどの程度斬新であるのか、またどのような問題に効果的か逆にどのシチュエーションで難しいのかといった点については、入門編だけでは十分に納得できず、もっと深く知りたいと感じました。 感覚での発見は? バックパックに関する課題を通じて、人間の感情や感覚を軸とした問題発見のアプローチを実感できた点が印象的でした。 組織への応用は? また、企業や組織というマクロな課題に対しては、日常の業務にそのまま適用するのは難しいと感じました。しかし、対クライアントやチームとの対話など、個々のコミュニケーションの中で共感や創造力が発揮される場面では、大きな可能性を感じます。 学びをどう活かす? 今回学んだ内容を、同僚や後輩にも伝え、彼らの反応を見ながら自分なりに講義の内容を説明してみたいと思います。実践を通してデザイン思考がどのような場面でどのような価値を生むのかを探り、理解を深めていくことが今後の課題だと感じました。
AIコーチング導線バナー

「課題 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right