データ・アナリティクス入門

ロジックで拓く成長の一歩

何故手順を明確に? これまで「何となく」で進めていた問題解決のステップについて、今回あらためて「What, Where, Why, How」を意識する重要性を実感しました。手順を明確にすることで、全体の流れが整理され、取り組みがより効果的になったと感じます。 現状のギャップは? また、日常業務においてしばしば指摘されるように、「あるべき姿(目標)」と「現状」とのギャップが課題であるという考え方は、自分自身の問題発見力の不足を強く意識させる要因となっています。全体的な視点で課題を捉えたつもりでも、見えていない問題が存在する可能性があるため、ロジックツリーやMECEといったフレームワークの有用性を改めて認識しました。 遅れはどう取り戻す? 実際、現状では採用目標(ありたい姿)に対して採用実績が未達の状況です。今月である第3四半期が締まり、来月から第4四半期に入るため、これまでの遅れをどのように取り戻すかについて、ロジックツリーやMECEを活用して具体的な施策の検討に結びつけたいと考えています。 どんな課題に挑む? 具体的には、以下の点について課題を追求していきます。 ・母集団形成がうまくいっていないため、応募を阻害している要因や、求人票を見ても応募に至らない理由の究明 ・先月と比べて書類選考通過率が大幅に低下しているため、不合格となる要因の分析 ・面接実施率を向上させるための施策の検討

データ・アナリティクス入門

効率的な問題解決の秘訣とは?

仮説を立てる重要性とは? What Where Why Howや問題解決のプロセス、3C、4Pなどのフレームワークを学ぶ中で、「仮説を複数立てる」ことが特に意識できていなかったと感じました。振り返ってみると、実際に分析と仮説検証を行った段階で満足してしまっていた自分に気づきました。 プロセスの抜け漏れを防ぐには? 問題解決のプロセスは、データ分析において無意識に取り組んでいることが多いのですが、時折抜けや漏れが生じることがあります。体系的に整理することで、網羅的に仮説検証を行うことができると感じました。 営業戦略にデータ分析は必須? 営業戦略策定では、データ分析が必ず伴います。What Where Why Howのそれぞれのフェーズで言語化し、仮説を立て、検証して原因を特定し、進めていきたいと考えています。3Cや4Pといったフレームワークは、常に最初に使うのではなく、仮説を立てて分析を行った後にチェックの際に活用したいと思います。 網羅性を確認するフレームワークの使い方は? フレームワークの使用は、まず自分で考え分析を行った後、網羅性を確認するために活用することが大切です。現在進行中の「課題」の分析においても、仮説を複数立て、問題の所在を特定し、原因を突き止めていくという流れを忘れずに進めているところです。網羅的に1ステップずつ進めていくことを意識して、課題の解決に取り組んでいきたいです。

マーケティング入門

悩みをチャンスに変える視点の力

ペインの視点は何故大切? ペインポイントをゲインポイントに変換する視点の重要性を学びました。顧客自身が気づいていなかった、しかし実際には非常にありがたいと感じる欲求を捉えることが鍵であると理解しました。カスタマージャーニー全体を振り返り、各段階でのペインポイントを探るとともに、その解決策を提案することがマーケティングの本質であると再確認できました。 課題はどう見えている? また、クライアントや候補者それぞれのカスタマージャーニーで発生するペインポイントを具体的に洗い出すことが有効だと感じました。例えば、クライアント側では、求人の発生、現場との採用スペックに関するヒアリング、エージェントの発注、推薦、面接から内定に至るまでの各プロセスで、それぞれ異なる課題が浮き彫りになります。内定段階での辞退や、推薦における的外れな提案、さらには依頼に対する不十分な対応や無駄な打ち合わせの時間が大きなペインとして挙げられます. 候補者の悩みは何だろう? 一方、候補者のカスタマージャーニーでは、スカウトの受領、エージェントとの面談、応募、面接、内定獲得、入社といった流れの中で、面接対策の不十分さや、自身のメリットが十分に伝わらないことがペインとして感じられる点が目立ちました。各プロセスでの課題を具体的に整理することで、より良い解決策を見出し、双方にとって満足度の高いプロセスの構築に繋がると学びました。

クリティカルシンキング入門

論理と実践で挑む成長ストーリー

視点をどう広げる? 先入観や過去の経験に左右されず、偏った考えに陥らないことが非常に重要だと感じています。常に多角的な視点で問題にアプローチするため、MECEの原則に従って要因を整理し、重複なく抜け漏れのない議論を進める必要があります。また、問題解決のプロセスでは、目的意識をしっかり持つことが基本です。目的を見失うと、本質ではなく細部にとらわれがちになるため、常に問い続ける姿勢が真因に迫るための鍵となります。そして、学んだことを実践し、反復することで自分自身を鍛え上げることが大切だと考えています。 業務推進はどう進む? 現在、私が取り組んでいる業務推進上の問題や課題の解決活動においても、これらの考え方を実務に活かしていきたいと思います。現状の組織運営上の課題を明確にし、その本質を突き止め、再発防止策をしっかりと構築する仕組み作りに努めています。改善メンバーとの日々のディスカッションを通じ、ロジカルに問題に向き合う環境を創出することで、組織全体の進化と若手メンバーの育成にも繋げていきたいと考えています。 クリティカル思考はどう? また、業務にクリティカルシンキングを取り入れることは必要だと認識しています。実際に導入する際、業務全体の時間が一時的に増加する可能性はあるものの、問題の本質にたどり着き、解決および再発防止が実現できれば、その増加は一時的なものであると自分なりに結論付けています。

クリティカルシンキング入門

深掘りで変わる!バイアス解消術

ライブ授業で得た気づきとは? ライブ授業の実習を通じて、自分の思考にバイアスがかかっていることを実感したため、物事を深掘りすることの重要性を改めて感じました。MECE(Mutually Exclusive, Collectively Exhaustive)やロジックツリーといった手法を学び、それを自分のものとして使いこなせるようになることで、より深く物事を考え振り返る行動につなげることができると考えています。 提案資料にどう活用する? 社内システムの担当として、ITを駆使し事業課題を解決するシステムの企画や立案を行う際には、一度自分の考えを止めて客観的な視点を取り入れ、提案資料にその考えを反映させるよう努めています。そうすることで、より説得力のある資料を作成できるのではないかと考えています。また、部下との評価面談では、クリティカルシンキングを活用して部下の考えを引き出し、自分の意見も効果的に伝えることができると思っています。 判断を支える習慣とは? 自身で何らかの判断を行う際には、なぜその判断に至ったのか自問する習慣を身につけることが重要です。その問いかけをロジックツリーなどに書き起こして思考を整理します。これを実践するために、PCの付箋アプリにこれらの行動を記載して常に視界に入れるようにし、ロジックツリーなどで思考を整理するためのメモ用紙を常に手元に置いて実践していきたいと考えています。

クリティカルシンキング入門

目に仕事させる分析術

グラフで何が見える? 数字や表をそのまま眺めるのではなく、グラフ化することで「目に仕事をさせる」という考え方が印象的でした。数字を様々な角度から検証し、視覚的に捉えることで、普段は気づきにくい点が浮かび上がると感じました。また、MECEという概念についても、モレなくダブりなく分析するための具体的な手法(層別分解、変数分解、事象のプロセスでの分解)があることを学び、今後の分析において意識して活用していきたいと思いました。 現状把握のコツは? 私は全社の事務部門において、業務プロセス上の課題を明確にし、改善策を提言・実行する役割を担っています。各種データから課題や問題点を抽出する際、今回学んだ分析手法を取り入れることで、より正確な状況把握ができると期待しています。また、メンバーからの意見をそのまま受け入れるのではなく、他の視点も取り入れながらクリティカル・シンキングを活かして問題点を見極める重要性を再認識しました。 多角的な視点は? 日々の報告や相談を受ける際は、数字については多角的な分析ができているか、課題の洗い出しについてはMECEの観点で漏れがないかをひとつひとつ意識しています。必要に応じて分析の切り口を増やし、グラフ化するなど、手を動かしながら客観的に情報を整理しています。説明を行う際にも、これらの視点が十分に盛り込まれているかを確認し、分かりやすい内容を提供できるよう努めています。

データ・アナリティクス入門

平均に惑わされない、本質を探る

平均値だけで信頼できる? 平均値だけに頼ると、誤った仮説に導かれる可能性があると学びました。今後、データに向き合う際は、代表値だけでなく散らばりにも十分に気を配ることを心がけます。 どうやって指標を使い分ける? 具体的には、単純平均、加重平均、幾何平均、中央値といった指標を意識して使い分け、状況に適した分析を行いたいと考えています。 SNS分析はどう進める? また、SNSコンテンツの制作分析においては、各カテゴリによって、反応が良い投稿でもインプレッションが伸びにくい場合や、逆に反応が少なくともインプレッションが増えるケースが存在することに気が付きました。このような現状から、再現性を持ったPDCAサイクルの実現が課題であると感じます。 どの手法で再現性を高める? そこで、各コンテンツカテゴリについて平均インプレッションとユーザーの反応(例えば、いいね数など)の相関や散らばりを分析することで、再現性の高い投稿カテゴリを見つけ出せる可能性があると考えています。 具体的な分析アプローチは? 具体的なアプローチとしては、まずコンテンツカテゴリの整理を行い、外れ値を除いた各カテゴリごとの平均インプレッションを調査します。次に、平均インプレッションとユーザーの反応数の相関関係や、データの散らばりについても検証します。特に、散らばりが小さいカテゴリは、再現性を高めやすいと捉えています。

デザイン思考入門

全体を捉える登山の教訓

知識の罠に気づくか? 業務系システム開発では、顧客の業務知識が不可欠です。多くの経験を積んでいくうちにさまざまな知識を吸収できる一方、顧客の抱える課題を定義する際、その知識が逆に思い込みに陥る原因ともなりかねません。実際、ある講義での体験では、登山中の一場面だけに目を奪われ、準備や登山後のプロセスという全体像を見失ってしまったと感じました。このように、顧客のことを考えているつもりでも、自分の頭の中で構築したイメージにとらわれやすいという問題意識が生まれました。 顧客の本音を引き出す? 新規案件のヒアリングでは、課題定義を意識しながら、まず顧客が困っている事柄を書き出してもらい、自分なりに整理してみました。講義で学んだ一次コーディングを参考に、何も知らないという姿勢で質問を続けた結果、顧客自身が「当たり前」と考えている部分を改めて考えさせられる場面が増えました。対話を重ねることで課題が可視化されるプロセスを実感し、より具体的に問題に向き合う大切さを学びました。 全体を見渡すには? 登山の例においても、単に登山中だけにとらわれず、準備やその後の過程も含めた全体を見渡すことが必要だと感じました。どのような課題定義においても、まずプロセス全体をしっかりと考えることが、より正確な理解へとつながると実感しています。今後はこれらの気づきをもとに、広い視野で課題解決に向き合っていきたいと考えています。

デザイン思考入門

受講生が感じたデザインの魅力

デザイン思考の基礎は? 6週間にわたり受講したデザイン思考の入門講座では、これまで漠然としていた基礎体系が明確になり、その各ステップや方法論に触れることができました。従来からあるKJ法も実は発想の一手法であり、シンプルながら発想の視点を巧みに整理するSCAMPER法の学びも非常に興味深かったです。 従来手法との違いは? ただ、従来の問題解決手法との違いや、どこがどの程度斬新であるのか、またどのような問題に効果的か逆にどのシチュエーションで難しいのかといった点については、入門編だけでは十分に納得できず、もっと深く知りたいと感じました。 感覚での発見は? バックパックに関する課題を通じて、人間の感情や感覚を軸とした問題発見のアプローチを実感できた点が印象的でした。 組織への応用は? また、企業や組織というマクロな課題に対しては、日常の業務にそのまま適用するのは難しいと感じました。しかし、対クライアントやチームとの対話など、個々のコミュニケーションの中で共感や創造力が発揮される場面では、大きな可能性を感じます。 学びをどう活かす? 今回学んだ内容を、同僚や後輩にも伝え、彼らの反応を見ながら自分なりに講義の内容を説明してみたいと思います。実践を通してデザイン思考がどのような場面でどのような価値を生むのかを探り、理解を深めていくことが今後の課題だと感じました。

データ・アナリティクス入門

仮説思考で課題を究める実践術

フレームワークは何に役立つの? フレームワークの使いどころについて、3Cや4Pといったものは聞いたことがあっても、実際にいざというときに活用できるかどうかが重要だと感じました。今回の実習では、仮説を立てる際に有効に使えると実感できたため、今後すぐに引き出せるように知識整理ツールで整理しておきたいと思います。今後触れる新たなフレームワークも同様に蓄積していくつもりです。 仮説思考で未来は変わる? また、仮説を考えること自体に意義があるという新たな視点も得られました。これまでは、漠然と考えるべき時に考えるという認識でしたが、仮説思考を業務に取り入れることで、課題に対するアプローチがより具体的かつ効率的になると感じています。今後は、積極的にこの考え方を意識して、業務改善に役立てていきたいと思います。 課題解決のヒントは? 部署や会社内に存在する課題を、フレームワークを活用して仮説を立てることで、本質的な問題点の抽出や、課題解決に向けた具体的な行動への落とし込みが可能になると考えます。漠然と感じる課題を仮説によって明確化し、実際の状況把握やデータ収集を通じて、もっともらしい原因に絞り込むことが大切です。そして、その原因を排除するための具体的な行動計画へと繋げ、もし課題が解決しなかった場合には、新たな仮説を立て行動に移すというプロセスを繰り返すことで、問題解決へと導くことができるでしょう。

データ・アナリティクス入門

ギャップを明らかにする学びの道しるべ

現状はどう認識? 課題解決のためのデータ分析を行う際は、まず「what」「where」「when」「how」の観点で現状とあるべき姿の違い、すなわちギャップを明確にすることが大切です。特に「what」では、現状と理想との間にどのようなずれがあるかを捉え、その認識を関係者間で事前にすり合わせておくと、混乱なく分析を進めることができます。 手法はどう整理? 次に、ロジックツリーやMECEといった手法を活用することで、要素を段階的に整理し、状況を階層や変数別に切り分けることが可能です。実際の業務においても、初めて触れるデータに関して上長とのギャップ認識のずれから分析をやり直すケースがあったため、事前の共有が重要だと感じています。 結果はどう活かす? また、分析結果をもとに報告書や提言を作成する際は、その場しのぎの発想に頼らず、体系的にロジックツリーを活用して現実的な対策を検討すべきです。社員の意識調査のアンケートなどでは、まず「what」「where」「when」「how」に関する仮説を立て、その上で使用項目の選定とデータ分析に入るプロセスが理想的です。 対策はどのように? さらに、社内教育後の報告書で今後の取り組みを提案する際には、すぐに実行できる対策と時間を要する対策に分類し、複数の段階に分けて具体的な打ち手を検討することで、実現可能な内容を選定することが求められます。

クリティカルシンキング入門

振り返り文で学ぶ問題解決テクニック

物事を分解する利点は? 「物事を分解する」という手法は、複雑な問題や課題を整理し、本質を掴むために非常に有効だと感じました。分解することで得られる利点として、全体像の明確化、真実への気づき、主観や思い込みの排除、具体的なステップの可視化が挙げられます。これにより、行動に移しやすくなり、自信がつき、切り口が増え、無駄が減ることで、コミュニケーションも円滑になります。 IT業界での分解の活用法は? 私はIT業界で働いています。分解を効果的に活用する場面としては、システム障害時のトラブルシューティングがあります。アプリケーションエラーの要因や原因を細分化して判断します。また、要件定義やシステム設計では、顧客の要求を具体的に細分化し、それぞれの機能や動作について詳しく検討・具現化します。プロジェクト管理やコードレビューにおいても、工程やタスクを細分化して効率的に管理し、効果的なレビューを行います。 明確な目標設定の重要性は? 実践においては、明確な目標設定が重要です。例えば、障害対応や要件定義の工程で課題を意識し、発生した問題を分解して整理します。分解された要素の因果関係を確認し、特に障害対応時には優先順位の判断も必要です。また、仮説を立てる姿勢やツールの活用も有効です。こうしたプロセスを定期的に繰り返し、振り返りを行いながら、自分のスキルとして確実に身につけていきたいと思います。

「課題 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right