データ・アナリティクス入門

実践で知るデータ分析の極意

振り返りの授業内容は? 今週は、これまでの学びを総合的に振り返る機会となりました。ライブ授業の録画を視聴し、講師や参加者の意見を聞きながら、実践的な課題に取り組む中で、分析の基本的な考え方や手順をストーリーとして学ぶことができました。最初に何をするのか、どのような課題に着目するのか、データの収集方法や加工の仕方、そしてどのように結論に結びつけるのか、という流れが非常に分かりやすかったです。 比較考察ってどう考える? また、社内にある商品の魅力度や売上の既存データを単独で捉えるのではなく、何らかの基準と比較しながら考察する重要性を再認識しました。問題の要因分析においては、一面的な意見に頼らず、ほかにどのような可能性があるのかを自分なりに掘り下げてみる姿勢が大切だと感じました。

データ・アナリティクス入門

実務に繋がる問題解決ストーリー

問題解決の基本は? 今回の総合演習では、「問題の明確化→問題箇所の特定→原因の分析→解決策の立案」という基本プロセスに立ち返り、学習に取り組むことができました。また、解決策を検討する際には複数の選択肢を洗い出し、それぞれの根拠をもって評価することをあらためて意識しました。とはいえ、実務で実際に取り組む際には、まだ自然に活用できていない部分もあるため、クラス終了後も学んだことを繰り返し復習する努力が必要だと感じました。 実務への活用はどう? 私の担当業務ではA/Bテストの利用が難しいと感じる一方で、今回のナノ単科を通じて知識こそが武器であると改めて実感しました。今後、活用の機会が訪れた際には、今回得た知識をしっかりと身につけ、実務に積極的に生かしていきたいと思います。

クリティカルシンキング入門

学び整理で未来に挑む

自分の成果は何? 全体を振り返る中で、自分にできている点と十分に理解できていない点、あるいは理解しているにも関わらず実践できていない理由について、改めて考える機会となりました。 問題と解決はどうなる? また、問題とは何か、そしてその解決方法について学ぶ中で、常に実行手段に焦点を当てがちな自分の傾向に気づくことができました。 提案の伝え方は? 今後は、お客様への提案時に現状、理想、および問題点や課題を体系的に整理し、仮説も交えてまとめる際に、今回の学びを十分に活かす所存です。 分かりやすい資料作りは? さらに、資料作成時に長文になりがちな点を改善し、分かりやすく整理するとともに、デザイン面でも工夫を凝らして、魅力ある資料作りに努めたいと考えています。

戦略思考入門

論理と感性で描く新たな未来

どんな姿を目指す? この6週間で、自分が目指すべき姿を明確にすることの大切さを実感しました。改めてありたい姿について考える機会を得ることで、今後進むべき方向が見えてきた気がします。 習慣にする理由は? また、フレームワークを用いた分析を通じ、根拠に基づいて大胆な取捨選択を行う力を養うことができました。今後は、この学びを日々の習慣とし、常に論理的な視点で物事に取り組めるよう努めたいと思います。 業界分析の極意は? さらに、感覚や単なる事例に頼った提案ではなく、クライアントの業界全体を見渡しながら、フレームワークを活用して徹底的に考察する姿勢を身に着けることが必要だと感じました。こうした意識や習慣が、新たなアイデアの源泉になると確信しています。

アカウンティング入門

数字が語る戦略の真実

戦略と数字の関係は? これまでの学びを振り返る良い機会となりました。事業運営においては、コンセプトなど大枠の戦略が存在する一方で、その背後にはP/LやB/Sといった数字が支える側面があることを再認識しました。実際、P/LやB/Sは結果として現れる数字であり、事後にしか把握できないという点は留意すべきです。 競合や顧客の分析はどう? また、P/LやB/Sを理解することで、自社や競合他社の強みや弱みを把握する材料となると感じました。特に、ターゲットとする企業を決定する際には、顧客の分析が不可欠です。決算情報としての営業収益や営業利益、前年同期比の数字だけでなく、B/Sから読み取れる企業の投資行動にも注目し、先手を打つ戦略を立てていきたいと思います。

戦略思考入門

SWOT分析で見つけた新視点

分析手法はどう活かす? 3C分析やSWOT分析が特に学びになりました。普段、顧客のニーズには気を配っているものの、市場のマクロな視点が不足していると気づく機会となりました。SWOT分析では、頭の中でなんとなく考えていた内容が図式化されることで整理され、今後も活用していきたいと感じました。 実務で何を感じた? 自分のクライアントワークにおいて、これらのフレームワークが大いに役立つと実感しています。特に初動でプロダクトの方針を定める際、分析を通じて顧客と互いの弱みや強みを共有し、具体的な方針の策定につなげることができると思います。双方の認識のずれを防ぎ、現状の課題や強みを明確にすることで、その後のプロダクト拡張にも寄与すると考えています。

データ・アナリティクス入門

比較が生む新たな気づき

分析比較の重要性は? 今回の講義を通じて、分析の基本は「比較」にあると学びました。業務で調査データを扱う中で、過去のデータとの比較は無意識に行っていたものの、今回意識的に言語化することでその重要性を改めて実感しました。 データ整理ってどう? また、データの要素を整理する方法も学び、意味のある値とそうでない値を見分けることの大切さが身に染みました。これまではその違いを意識していなかったため、新たな視点を得る良い機会となりました。 比較で何が見える? 今後は、業務において製品の売上や調査結果、製造パラメータなどさまざまなデータを扱う際、必ず過去の事例や他社のデータと比較し、違いを明確に伝えることを心がけていきたいと思います。

クリティカルシンキング入門

データが語る学びのワクワク発見

どう切り口を見極める? 数字の分析において、与えられた情報をそのまま受け取るのではなく、細かく分解し、どの切り口が有効であるかを見極める重要性を再認識しました。複数の視点でデータを分解すると、異なる結果が導かれることが印象に残っており、分析の際にはMECE(漏れなく、重複なく)を意識することが大切だと感じました。 実務はどう評価する? 実際の業務では、データ分析を行う機会は少ないものの、マーケターの提案内容を確認する際には、情報を細分化し、複数の切り口で評価する手法を取り入れています。また、トラブル対応においても、確認すべき事項がMECEになっているかを念頭に置きながら進めることで、より確実な対策を講じることができると考えています。

データ・アナリティクス入門

比較が導く成長のヒント

比較の本質を問う? 分析の基本は「比較」にあると認識しました。以前は、予算と実績や先月と今月、さらには異なるセグメント同士の比較を無意識に行っていたものの、本質的な意味を正しく理解していたとは言い難いと気づきました。今後は、比較する対象を明確にし、その結果として目的が達成できることを確実に担保しながら進めたいと感じています。 どの比較が課題解決? また、実務においても、目標との比較やその内訳の分解を行う機会は非常に多いです。単にデータを提示するのではなく、何を比較すれば課題改善に向けて一歩前進できるのかをはっきりさせながら進めることが重要です。さもなければ、データを示すだけで満足してしまい、何も判断できない状態に陥る恐れがあります。

戦略思考入門

戦略で切り拓く価値の未来

週ごとの繋がりは? 学んだ内容が各週ごとに連携していると実感しました。戦略的思考を実践するためには、適切なフレームワークを用いて現状を整理し、顧客のニーズに基づいた差別化戦略を立てることが必要です。すべての施策を同時に実行するのは難しいため、定量的な判断に基づいて選択し、経済規模や範囲に関するメカニズムを理解することが重要だと考えます。 他社統合は何を? また、会社全体で他社との統合が予定されていることから、改めてお客様に提供できる価値について考える機会が増えています。特に、自部門の存続が問われる中で、今回学んだ差別化の視点を活用し、他社との差別化やお客様に対してどのような価値を提供できるのかを明確に言語化していきたいと思います。

戦略思考入門

実務に活かす戦略思考の極意

この週で何を学んだ? 今週は、これまでのWeekの振り返りを行い、戦略思考入門で学んだ内容をどのように実務に活かすかを考える良い機会となりました。戦略思考は、目的を最短かつ最も効率的に達成するためのツールであると同時に、まず目的の設定そのものが非常に重要であると改めて感じました。 どう戦略立てる? 日々の業務に取り組む際には、前例にとらわれず自分なりの戦略を立てる習慣を身につけたいと考えています。たとえば資料の取りまとめを依頼された際、単に情報を羅列するのではなく、誰がどのような目的で利用するのか、その目的に合わせるためにはどのような要素が必要かを慎重に考え、最も効率的に情報を収集して反映する方法を見出すよう心がけたいと思います。

データ・アナリティクス入門

エクセルで紐解く学びのヒント

どんな分析で進める? これまでの業務で、約100名を対象とした分析を行う機会がありました。エクセルを用いたビジュアル化が簡単にできるため、基本的には中央値と標準偏差を中心にデータの分布を確認していました。しかし、平均値など他の代表値も併せて計算し、データ全体を多角的に眺めた上で仮説を立て、分析を進めるフローが重要だと感じています。 どう観察すれば精度? また、サンプル数が少ない場合であっても決めつけず、平均値などを算出してデータをしっかりと観察することで、より精度の高い分析が可能になると考えています。このようなフローを週に1回以上実施し、標準偏差などの統計値は適宜AIに質問したり、エクセルの関数を活用するなどして算出しています。
AIコーチング導線バナー

「機会」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right