リーダーシップ・キャリアビジョン入門

対話で育む信頼のフレームワーク

対話と傾聴の意味は? これまで、対話や傾聴、心理的安全性について、会社のメッセージとして発信されてから約5年になります。皆が感覚的に実践しており、一人ひとりが真摯に相手と向き合っていると感じていました。今回、マズローの欲求5段階やハーズバーグの動機付け理論を組み合わせて学ぶことで、感覚で把握していた他者のモチベーションの動きや、デモチベーションの要因がより具体的に理解できるようになりました。また、多様な属性のメンバーが在籍する職場では、衛生要因に注目しがちですが、社会的欲求や動機付け要因にも目を向ける必要があることが事例を通して明らかになりました。 面談では何を確認? 面談の際、何を聞いて何を伝えるのか分からなくなってしまうことがありましたが、フレームワークを用いると、話が散漫になることなく、論点を整理しながら進められると感じました。具体的な経験をもとに振り返り、その共通項や特徴を一般化しつつ相手と認識を確認する。そして、個別の案件での学びや反省点を言語化し、次の仕事や役割にどのように活かすか議論する、という一連の経験学習サイクルは非常に有用です。 信頼はどのように築く? 直近では、とあるメンバーから「〇〇さんから信頼されていないと感じる」「自分に悪いところはないか」「なぜ信頼されないのか」といった相談を受けました。信頼されていないと感じる場面について問いながら、同じ景色を共有しようと努める中で、動機付け要因が十分に満たされていないことが伺えました。話があちこちに飛んだ場面もありましたが、フレームワークがあることで大切なポイントを見失わずに済みました。 組織の欲求を感じる? また、先日、退職した元派遣社員とのランチでは、「以前所属していた会社では感謝された経験がなく、歓迎会や懇親会もなかった」との意見があり、中途入社の社員も同様の意見を持っていました。外部の目を持つ二人の強い違和感とストレスを聞く中で、組織として、社会的欲求や承認、尊厳欲求が十分に満たされていないことがデモチベーションの一因になっているのではないかと実感しました。 相手をどう理解する? 私は直接評価対象の部下はいませんが、相談を受ける機会は確かにあります。その際、フレームワークを意識し、相手の考えや状況をしっかりと理解するよう努めたいと考えています。また、さまざまな属性のメンバーと会話する際には、表情なども含めて真摯に向き合うことが重要だと感じています。すぐにすべての欲求を満たすのは難しいかもしれませんが、相手を正しく理解し合意形成を行うことで信頼関係が構築され、その上で改善行動へとつながると信じ、今後も対話に努めたいと思います。

アカウンティング入門

数字が語る経営のドラマ

損益計算書とB/Sの意味は? 今週は、損益計算書(P/L)や貸借対照表(B/S)の基本構造と、それぞれが経営に果たす役割について学びました。特に「売上-費用=利益」というシンプルな公式が、どのように経営判断に活用されるか実例を交えて理解できたことで、業務においても数字に注目する視点が徐々に芽生えてきました。 数字の背景はどう読む? また、「売上高営業利益率」や「売上高原価率」といった指標を通して、経営の効率性と健全性を客観的に判断する視点を得られました。これまでただ並んでいた数字も、ストーリー性をもって捉えることができたのは、大きな前進だと感じています。 戦略の裏に何がある? ケーススタディとして取り上げられたカフェの事例では、数字の裏にある「戦略」や「思い」にも注目することの大切さを実感しました。単に数値の良し悪しを見るのではなく、その背景や立てた仮説を考える力が、経営判断に必要不可欠であると痛感しています。 財務の知識は増えてる? 自分自身、まだ財務の知識が十分とは言えませんが、「財務=経営の言語」であるという認識が深まり、少しずつ読み解けるようになった感覚があります。今後の講義でも、引き続き「数字の意味を考える姿勢」を大切にしていきたいと思います。 財務諸表から何が見える? また、「財務諸表を読む」という視点は、経理業務に直接関わらない私にとっても非常に重要です。財務三表のつながりを把握することで、会社全体の動きや課題が立体的に見えてくるという感覚は、点と点を線で結ぶような発見であり、大変有意義でした。 会議資料の数字はなぜ? 今後は、自社の月次会議資料に記載されるP/LやB/Sの数値を、ただの報告資料として流すのではなく、「なぜこの変動が起こったのか」「数字の背景にはどんな行動があるのか」を意識しながら読み解く習慣をつけていこうと考えています。まずは、関わる部門のコストに注目し、前年比の変化を読み取る練習を重ね、仮説を立てた上で、経理担当者や上司からフィードバックをもらいながら、理解を深めていく予定です。 黒字の危険性は何? また、講義で感じた問いとして「黒字であっても危険な会社は、どのように見抜けばよいか」という点があります。実際、損益計算書上は黒字であっても、キャッシュフローが不十分で会社が危うい状態に陥るケースがあるとの指摘を受けました。求人票などから企業の実態を見極める力も求められる中、黒字倒産の兆候について、他の受講生の方々とも意見を交わしてみたいと考えています。

デザイン思考入門

対話が拓くプロトタイピング

試作で既視感感じる? 試作は、プロダクトデザインや建築プロジェクトで通常実施される工程であるため、どこか既視感を覚えました。また、WEBのインターフェイスデザインに見られる機械のスイッチパネルといったメタファーは、自身の専門分野に近いこともあり、非常に理解しやすいと感じました。 WEB手法は建築に合う? WEBデザインと同様のプロセスが、建築や施設管理運営のデザインにどのように応用できるのか、非常に興味深いと感じています。これまでの事例に照らし合わせ、応用の可能性を検討してみるとともに、自身の事務所のホームページのリニューアルにも活用する予定です。 建築手法は信頼できる? 建築業界で活用される開発手法は、長い歴史と多くの実践に裏打ちされているため、精度が高く実務にも適していると実感します。しかし、似た考えを持つ人々によって運用されるため、気づかぬうちに独自の進化を遂げる場合もあります。また、竣工後のオペレーションや保守管理におけるプロトタイピングについては、まだ標準化された手法が確立されていないのが現状です。 デジタル手法は革新的? 一方、デジタル分野ではアジャイルなど、他分野にも影響を与える新たな開発手法が続々と生まれており、今回学んだフレームワークも積極的に研究し、応用してみたいと思います。機会があれば、実際にデジタル業界で活躍されている方のお話も伺いたいと考えています。 評価の落とし穴は? プロトタイピングの課題として、専門家でないユーザーが成果物の内容よりも表現技術の巧拙に左右されやすい点が挙げられます。上手な絵、最新の機材を活用した表現、巧みな言葉遣い、さらにはアイデアの発案者の知名度や地位によって、ユーザーの評価が影響を受けることがあるのです。優れたプロダクトを生み出すためには、制作者自身も厳しい目線を持つユーザーとの協働が必要だと感じています。 プロトタイプの役割は? また、プロトタイプは単なる開発工程の一部に留まらず、ユーザーとの対話のためのメディアとして機能すること、さらには開発チーム内のコミュニケーションツールにもなることを改めて確認できました。 意味の共有はどう? こうしたポイントは理解しているつもりでも、実際の開発後半では、開発者のアイデアを強調するためのプレゼンテーションツールとして利用され、ユーザーや他のメンバーが十分に参画できなくなるケースも少なくありません。今後の開発プロセスでは、プロトタイプの本来の意味をチーム全体で共有し、全員が対話できる環境作りに注力したいと考えています。

アカウンティング入門

BSで描く企業の安全地図

BSとは何を意味する? BS(貸借対照表)は、企業の財務状態を一枚の地図で表すものです。単なる数字の羅列ではなく、どのような資産を保有し、どれだけの負債を抱え、残りの資本がどれだけあるのかを示しており、「どれだけリスクに耐えられるか」を判断するための重要な指標となります。 安全性はどう確認? まず、BSは企業の安全性を測る指標です。資産は将来のキャッシュの源泉、負債は返済義務(キャッシュアウトの約束)、純資産は企業が自由に使える力を意味します。したがって、BSを見る際には、単純に数値を確認するのではなく、その背景にあるリスク耐性を理解することが大切です。 借入影響は何か? 次に、借入(負債)は損益計算書(PL)だけでなく、BSにも大きな影響を及ぼします。負債が増えると自己資本比率が低下し、企業全体の安定性が損なわれます。自己資本比率が低い場合、急激な売上減少に対処しにくくなり、BSが弱体化すると銀行からの制限や追加融資の難しさにもつながるため、借入はキャッシュだけでなく、財務健全性そのものに重大な問題をもたらします。 CFはどのように働く? また、BS、PL、キャッシュフロー(CF)のつながりにも目を向ける必要があります。BSが弱い場合、たとえPLが健闘していても倒産のリスクがあるほか、CFが十分に回らなければ、現金が入らない一方で負債だけが増大する可能性があります。したがって、企業の現状や将来の強さを評価するには、「BSの安全性 × PLの稼ぐ力 × CFの回り方」という三位一体の視点が必須となります。 課題はどこにある? さらに、学びを活かして、企業の課題を財務三表の構造に基づいて説明できるようになることが求められます。例えば、「売上が伸び悩む」「研修効果が現れない」「人件費が高い」といった課題が、PL(稼ぐ力)、BS(財務の強さ)、CF(お金の流れ)のどこに本質があるかを示せると良いでしょう。そして、提案時には以下の視点から実現可能性を評価することが重要です。 ・施策が利益にどのように影響するか(PL) ・リスクに対して耐性があるか(BS) ・キャッシュの流れはどうなっているか(CF) BSで未来を見る? このように、BSは単なる現状の台帳ではなく、企業がどの程度リスクに強く、将来の投資に臨めるかを示す重要な資料です。売上や利益だけではなく、負債と資本のバランス、自己資本比率、短期の支払い能力などを加味することで、企業の安全性や信頼性、そして長期的な力を総合的に判断できるようになります。

戦略思考入門

日常で見つける戦略のヒント

戦略思考の定義は? これまであいまいだった「戦略思考」の定義が明確になったことが大きな収穫です。仕事だけでなく、日常生活でも戦略思考を実践していることに気づき、戦略思考がより身近なものだと実感しました。 ゴールはなぜ大事? また、戦略思考の必要要素として、①ゴールの明確化、②道筋の選択、③独自性の3点があると理解しました。特に①については、ゴールを設定するのではなく、そのゴールをより明確にすることが重要だと感じています。どの立場の人にも誤解なく理解してもらえる共通認識のゴールであり、なぜそのゴールなのかを自分自身の言葉で深く考えることが求められると実感しました。 選択肢はどう広がる? ②に関しては、選択肢を多く引き出すことが重要であり、これには自分自身の引き出しが不足していると感じています。従来通りのやり方に頼ってしまい、狭い視野で進めることで手戻りが発生することもあるため、今後はより広範な視点を持ちたいと思いました。 意見伝え方はどう? 加えて、決められた時間内に考えを整理し、他者に伝える難しさも痛感しました。自分の意見をうまくまとめて伝えることが苦手なため、グループワークで他の受講生の方法を学び、少しずつ改善していきたいと考えています。 全体評価はどう? 総評として、戦略思考の各要素を具体例とともに理解し、日常や業務への応用を意識できた点は評価できます。しかし、選択肢の幅を広げるための工夫についてはさらに改善の余地があると感じました。 実務でどう活かす? ゴールの明確化や選択肢の重要性を実体験を通して学べたことは、実務における大きな強みになると感じています。業務現場で共通認識を持つゴールを実現するためには、単語の意味や背景の明確化、定量化や5W1Hの整理といったプロセスが必要だと思います。また、従来のやり方にこだわらず、目的の本質を捉えるために、常に多様な視点を持ち、周囲の意見や過去の失敗から学ぶことが大切だと考えます。 実践にどう繋ぐ? 今後は、戦略思考を実際の業務行動に落とし込み、自己成長へとつなげる体験を積み重ねたいと思います。例えば、運営を担当する経営方針発表会では、単に慣習に従うのではなく、誰がどのような状態になることが理想なのか、参加者の感情や行動に変化が現れるような目的の具体化が必要です。同様に、中長期的な課題に対しても、まずはビジョンを誰もが共通認識できる言葉に言語化することが第一歩だと認識しています。

データ・アナリティクス入門

仮説で拓く学びの道

分析の基本は何? 本資料は、分析を比較の視点から行い、仮説思考を持って問題に取り組むための考え方と手法を示しています。分析の要点として、プロセス、視点、アプローチの三つの軸が必要とされ、各軸が互いに補完しながら、より深い理解を促すことを意図しています。 プロセスをどう考える? プロセスでは、まず目的や問いを明確にし、その問いに対する仮説を立てます。次いで、データを収集し、分析によって仮説を検証するという流れが求められます。 視点と工夫は? 視点については、インパクト、ギャップ、トレンド、ばらつき、パターンといった観点からデータを捉え、それぞれの側面から情報を整理していきます。一方、アプローチでは、グラフ、数字、数式などを用いて、情報を視覚的かつ計量的に表現することで、理解しやすくする工夫が大切です。 可視化はどう? 比較のための可視化手法としては、データの特徴を一つの数字に集約する方法、グラフ化して目で捉える方法、そして数式に集約するアプローチがあります。これにより、データの持つ意味がより明確になります。 代表値は何? また、データを見やすくするためには、代表値と分布の確認が有効とされています。代表値としては、単純平均、加重平均、幾何平均、中央値などがあり、一方、ばらつきを見るためには標準偏差が活用されます。特に、95%のデータが含まれるという2SDルールは、分布の確認において重要な指標となります。 契約単価の意味は? 具体例として、【1】の契約単価の場面では、相加平均を用いた結果、受注率などの違いが十分に反映されず、平均値が大きく見えてしまうという事実が挙げられます。そのため、加重平均を用いることで、感覚に近い平均単価が算出できる可能性が示唆されます。 成長率はどう考える? また、【2】の成長率の場面では、合計の成長率を足して年数で割る方法が用いられていましたが、こちらは幾何平均を利用するアプローチが適切です。具体的には、(1+x)^2=◯年後の売上/スタート年の売上という考え方に基づく計算が求められます。 計算見直しは? これらの考え方を踏まえ、Q2では【1】と【2】の実際の計算を見直し、過去に作成したデータを再評価する行動を取る必要があります。また、平均値の計算方法一覧を見える場所に保存し、必要な際にすぐに確認できるようにすることで、定着した学習行動が実現されることが期待されます。

データ・アナリティクス入門

データに宿る成長ストーリー

全体の流れはどう? 全体の流れとしては、WHAT→WHERE→WHY→HOWの順で進める点が印象に残りました。ただ単にデータを集めるのではなく、ひとつひとつの分析がストーリーとして意味を持つように、傾向をしっかり掴むことが大切だと感じました。 問題は明確か? まずWHATの段階では、今解決したい問題を明確にし、目標となる結論やイメージをもっておくことが重要です。何のためにデータを扱うのか、最初に目的をはっきりさせることで、分析全体の方向性が定まります。 どの候補を選ぶ? 次にWHEREのステップでは、複数の候補を出し、解決に役立ちそうなポイントやデータが取得可能かを検討します。単独で見る方法や、ツリー・組み合わせといった整理手法を用いながら、どの観点に重点を置くかを決めていくとよいでしょう。 原因は探れた? さらにWHYのフェーズでは、考えられる原因をできるだけ多く、また網羅的に仮説として挙げることが求められます。どんな要素が問題に影響を及ぼしているのか、広い視点で捉えることが分析の精度を高める鍵となります。 数値は何を示す? また、データを見る際には実数と比率の両面から代表値などの数値に注目し、明らかにすべきポイントを意識する必要があると再認識しました。どのデータが問題解決に直結するのかを見極めるために、どんな情報をどう加工すべきかを事前に考えておくことが重要です。 目的は明確に? 特に、日々の業務では「言語化しなくても大丈夫」という考えに陥りがちですが、データを扱う際には必ず「何をしたいのか」という目的を明確にすることが不可欠だと感じました。また、データ収集時にも最終的なアウトプットのイメージを持つことで、やみくもな収集を避け、意図のあるストーリーを先に構築する姿勢が大切です。 フォーマットは有効? 今後は、以下のフォーマットを活用していきます。まず、解決したい問題を最初に記述し、次にストーリーや考え方、データの集め方・分析方法の全体像を示します。その上で、WHAT、WHERE、WHY、HOWの各パートを用意して進める手法を徹底していきたいと思います。 仮説は多角的? 最後に、仮説思考における「複数と網羅」という視点が非常に印象的でした。インパクト、ギャップ、トレンド、ばらつき、パターンなど、さまざまな角度から物事を見る姿勢は、今後の成長に大いに役立つと感じています。

戦略思考入門

戦略で切り拓く未来への一歩

戦略思考とは何か? 戦略思考とは、事業目的を達成するために限られたリソースを活用し、最速かつ最短でゴールに到達する方法を考えることだと学びました。目の前の業務に追われ、つい回り道をしてしまうことがある中、戦略思考を意識することで、たとえ初めの方向性が誤っていたとしても、速やかに修正できる点に気づかされました。 情報整理の意義は? これまであまり意識してこなかった情報の構造化についても大きな学びがありました。複雑な問題や情報を論理的かつ体系的に整理することで、具体的なアクションプランを作成し、着実に行動に移せるようになると感じました。今後は、計画立案の前に必ず情報を整理し、構造化するプロセスを大切にしていきたいと思います。 部門の実践法は? 所属している部門では、中期経営計画に基づいた制度改革推進に向け、構造化されたアクションプランを策定することが有効だと考えています。新制度を定着・推進するためには、最速かつ最短で目標達成に向かうための具体的なプラン作りが必須です。 育成の方針は? また、人材育成の面でも、各メンバーの強みや改善点、スキル・コンピテンシーの違いを踏まえ、キャリアゴールに向かって成長を支援することが重要だと感じました。自分自身が戦略の意味を伝えながら、各自が自らのキャリア戦略を描けるよう手助けしていきたいと思います。 業務効率はどう? さらに、業務オペレーションの品質向上にも戦略思考は効果的です。生産性の向上と効率化を目指し、無駄を省くとともに、目標と現状のギャップを明確にし、その差を埋めるための施策を優先順位をつけながら推進していくことが大切だと考えます。 制度浸透策は? 制度の定着・浸透においては、会社の理念やビジョン、ミッション、バリューを具体的なアクションプランに落とし込み、自らの言葉で表現し行動することが求められます。適切な人材に仕事を任せ、成長の機会を提供することで、組織全体の未来をつくるための体制づくりが必要だと改めて感じました。 学びの総括は? 以上の学びを通じて、戦略思考と構造化されたアクションプランの重要性を実感しました。今後は、これらの考え方を実務に活かし、制度改革、人材育成、業務効率化といった経営課題の解決に向け、着実に成果を積み重ねていきたいと思います。

データ・アナリティクス入門

データ分析で未来を築く!ナノ単科の意義とは

なぜ分析の目的を見失わない? まず、「何のために分析するのか」という「目的」を見失わないことが重要です。その上で、その目的を果たすためにはどのようなデータをどのように分析すれば良いのかという「仮説」を立てることが必要です。その仮説に基づき、必要なデータを収集し「意味を読み取る」ために適切にデータを加工し、その分析結果から新たな発見を導き、より良い意思決定を行うことが求められます。 データビジュアル化の役割とは? データ分析の一連のプロセスにおいて「意味を読み取る」ためには、代表値である平均値および中央値、ばらつき度合いを分布として示す標準偏差を用いた全体像の把握が重要です。また、それらを一目で容易に把握するためにデータのビジュアル化も欠かせません。そして、ビジュアル化されたグラフを見る前に、それまでに得た定量情報や定性情報をもとに自らの解釈と仮説を立て、その解釈・仮説と実際のデータを比較するアプローチを繰り返すことで、分析を深めていきます。 データ分析の順序を守るには? いざデータを前にすると、「仮説を立ててデータを見る」のではなく、「データ同士を比較して仮説を立てる」という癖があることに気づきました。この順序を間違えると意味がなさず、分析を深堀りできません。自然と正しいプロセスを踏むことができるようになるまで、意識して練習を繰り返したいと思います。 予算策定に活かす分析手法は? 直近では、予算策定にこのアプローチを使います。過去の売上や原価をもとに、標準偏差、加重平均、幾何平均、中央値を使ってより確からしい代表値を出し、定性情報も加味して来期の予算を策定します。この際、「仮説を立ててデータを見る(仮説との比較)」ことを意識して取り組みます。また、その代表値にした理由や定性情報の扱いについて第三者と共有し、対話を重ねることで、納得性のあるものとして示すことができるように努めたいと考えています。 今後意識する改善点は? 今後、以下の点を意識して取り組みます。 1. 標準偏差、加重平均、幾何平均について再度勉強し、特徴を深く理解する。 2. 「結論ありき」や「経験と勘」に頼らず、データ分析のプロセスを一つずつ丁寧に踏む。 3. 定性情報を「落としどころ」や「決め打ち」の要素として扱わないように意識する。

データ・アナリティクス入門

データ分析で見つける新たな視点

データ分析における比較の重要性とは? データを比較することは、他のデータと比較することでその意味合いを読み取ることにあります。繰り返しになりますが、「分析は比較なり」が重要です。単純な平均では見落としやすい情報を把握するために、データのビジュアル化を駆使し、バラつきを視覚的に理解することが求められます。比較を行い、グラフを解釈することで仮説を立て、その結果として次に分析すべきデータや分析の深掘りの方向性が明確になります。 代表値だけで十分か?アプローチを考える 大量のデータを比較するアプローチについて考える際、代表値の使用だけではデータの分布状況がわかりません。データの分布を考慮するために、標準偏差を併用します。標準偏差が大きければバラつきが大きく、小さければデータが集約していることを意味します。また、データをビジュアル化することも重要です。実際の業務では、加重平均とデータのビジュアル化が主に行われています。 代表的な数値には以下のものがあります: **代表値** 1. 単純平均 2. 加重平均 3. 幾加平均 4. 中央値 **散らばりを表す数値** - 標準偏差:標準偏差が大きいとデータがばらつき、小さいとデータが集約している。正規分布と2SDルールも考慮します。「起こりにくいことが起こっている」という実感値は5%です。 分析の深化にはどのプロセスが必要? 分析の内容に応じた代表値を使い、内容に応じたビジュアル化の方法を考えることが大切です。案件の特徴を「プロセス×視点×アプローチ」で分析することに重きを置くと良いでしょう。会社の施策展開にあたっても、目的に応じた比較を行い、ビジュアル化し、そこから仮説を立てて分析を深めていくサイクルを徹底していきます。過去の導入事例から仮説検証を行い、どの層にヒットしているかをビジュアル化し、現在進めているターゲティングの選定を進めていくことが求められます。 学びの共有はどのように行う? まず、メンバーにWEEK3の学びを共有し、現在取り組んでいる施策のターゲティングに役立てたいと考えています。根拠のあるデータを作成し、より良い意思決定に繋げることが目標です。代表値と標準偏差の仕組みを理解し、必要に応じて使い分けるために、日常の業務に取り入れてみることから始めましょう。

クリティカルシンキング入門

言葉の力で医療コミュニケーション向上

主語と述語の関係は? 日本語の正しい使い方について、今回の学びを通じて感じたのは、主語と述語の関係を意識する重要性です。これが噛み合わないと、文章の意味が曖昧になり、読み手に誤った情報を伝える可能性があります。その結果、信頼性を損なってしまうこともあり得ます。今後は、主語と述語の一致を確認する練習や、文章の見直しを通じて、正しい日本語の使い方を意識していこうと考えています。これらを習慣化し、継続的に練習していく必要があると感じました。 ピラミッドは何故有効? ピラミッドストラクチャーに関しては、これまで利用したことがありませんでしたが、情報を階層的に整理して伝える有効な手法だと学びました。「結論」から始め、それに続く「理由」と「具体例」を順に展開することで、読者が最初に結論を把握しやすくなります。このため、ビジネスやプレゼンテーション、文章作成において、非常に効果的なコミュニケーション手法であると感じています。 医療説明はどう伝える? 私は小児医療の技術職に従事しているため、これらの学びは次のような場面で役立ちそうです。保護者への病状や治療方針の説明では、明確で正確な表現が重要です。曖昧な表現は誤解や不安を招く可能性があるため、説明前に内容を整理し、主語と述語が一致しているか確認します。また、ピラミッドストラクチャーを活用することで、保護者や患者さんに対し「結論」から順に情報を伝えられ、理解が促進されるでしょう。 連携はどう強化する? 医療スタッフ間の連携でも、主語と述語を意識することで、正確で信頼性の高い情報共有が可能になると考えます。業務関連の資料作成や教育活動においても、ピラミッドストラクチャーを利用すれば、情報をより分かりやすく伝えられるでしょう。 業務改善はどうする? これらを日常的に取り入れることで、小児医療におけるコミュニケーションの質を高めていける可能性を感じています。日常のルーチンワークとは別にする必要があるかもしれませんが、業務終了後の見直し時間を確保し、以下の方法を試行していきます:文章化や図解化(ピラミッドストラクチャー含むフレームワークの利用)、再度の見直しです。また、日常的に400文字程度の文章を書くことが、当面の具体的な目標となりそうです。

データ・アナリティクス入門

代表値で読み解くデータのヒント

原因の絞り方は? 原因を探る際は、初めから抽象的で幅広い視点に陥らないよう注意が必要です。たとえば、複数の商品がある場合、どのカテゴリに低下傾向があるかという結論のイメージをあらかじめ明確にしておくことが重要です。 代表値の違いは? 次に、代表値の使い分けについて学びました。全体の傾向を把握するためには平均値が有効ですが、極端な値の影響を排除する場合は中央値が適しています。そして、一番多いパターンを知るためには最頻値を用いると良いでしょう。平均値だけでは見えない問題を把握するために、ばらつきや元データの傾向も確認することが求められます。 グラフはどう使う? また、グラフの使い分けが印象に残りました。数量の比較には棒グラフ、構成比を確認する際には円グラフが効果的です。データの可視化を行うことで、変化や傾向が一目で理解できるようになります。 率と実数の意味は? さらに、率と実数の両方を見る姿勢の大切さも学びました。率だけでは、実際の数が少なすぎる場合に意味が薄れる可能性があるため、実数と併せて確認する必要があります。逆に、率でも実数でも共に減少している場合は、本当に問題があると判断すべきです。特に回収数が一定でないアンケート調査では、基本的に割合での比較が推奨されます。 障害分析の見方は? 障害分析においては、障害対応時間(MTTR)の検証が具体例として有効です。極端な値に影響されない実態把握のためには平均値だけでなく、中央値の確認も欠かせません。さらに、最頻値を合わせて見ることで、改善すべき典型的なケースを特定することが可能です。 エラー分析はどう? エラー分析においては、エラー率と実数の両面から検討することが重要です。たとえば、ある機能でエラー率が高くても利用者数が少なければ意味が薄れますし、逆にエラー率が低くても多数の利用者に影響している場合は大きな問題と言えます。 具体的な行動は? 具体的な行動としては、障害レポートのテンプレートに「平均値」「中央値」「最頻値」の項目を追加し、代表値の使い分けを習慣化することが推奨されます。また、エラー率を報告する際には、必ず実数も併記するルールをチーム内で提案するよう心がけると良いでしょう。
AIコーチング導線バナー

「表 × 意味」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right