リーダーシップ・キャリアビジョン入門

気づきで育む本当のリーダー

どう支援すべき? パス・ゴール理論では、リーダーとしてのあり方を「自分がこうありたい」という視点からではなく、環境や相手の状態を見極め、適切な支援を行うことの重要性を学びました。依頼する際には、仕事の内容と相手の状況をしっかり把握し、求められるサポートを整理することが大切だと感じました。 バランス維持の鍵は? また、マネジリアル・グリッド理論を通しては、リーダーが「人間への関心」と「業績への関心」のバランスをどのように保つかを理解しました。各リーダータイプが与える影響を俯瞰し、自分が今どの位置にいるのかを認識することで、メンバーにどのような影響を及ぼしているのかを改めて見直す機会となりました。 任せ方は適切? 現状、業務を任せているメンバーに対しては、改めて任せ方を振り返る必要性を感じています。パス・ゴール理論の視点を取り入れ、相手の状態に合わせた業務の渡し方を行っているかを検証し、必要であれば方向性を変えていくことを意識しています。 タスクの明確化は? さらに、チーム全体で取り組む業務や施策が「何を達成するためのものか」という目的が必ずしも明確でないことが課題だと感じています。マネジリアル・グリッド理論に示されるように、単に人間への関心だけではなく、達成すべきタスクにも目を向け、何をすべきか具体的に示すことが必要です。一旦立ち止まり、現在のゴールとそのための方向性を改めて考えることが求められると実感しました。 育成方法はどう? 最後に、メンバーの成長や育成について、指導型から参加型へのシフトを図りたいと考えています。各メンバーの成長に対してどのような考えや実践をしているのか、共有をお願いしたいです。

データ・アナリティクス入門

データ分析で見分ける成功の鍵

データ分析で比較はなぜ重要? データ分析の基本は「比較」であることを学びました。しかし、ただ単に比較すれば良いというわけではありません。分析の目的に応じて比較の軸が異なるため、その目的を明確にすることが重要です。さらに、データ分析の結果を報告する際には、見せ方を工夫することも大切です。比率を見たいのか、推移を見たいのかなど、定量データに応じた適切な見せ方を検討する必要があります。 飛行機の生存能力をどう改善? 動画の中で、飛行機の生存能力を上げるための改善点を考えるという課題がありました。初めは「欠損している部分」を改善するべきだと思いましたが、分析の目的を考えると、「欠損していない部分」を補強する方が生存能力が上がるという解説を見て納得しました。 業務でのデータ分析の課題とは? 日々の業務でも、お客様がデータ分析をしたいと言いつつ、現状の把握だけで終わってしまうケースが多々あります。そこで、データ分析の基本として、目的の明確化と比較の重要性を伝えていきたいと思います。たとえば、実績だけの数値を並べているケースでは、その数値が良いのか悪いのか判断できず、その後のアクションが不明瞭になっているお客様が多くいます。このような場合には、具体的な提案を行いたいです。 学びを実践するプロセスが大事? 学んだことを実践し、アウトプットすることで、その結果が良かったのか、改善の余地があるのかを言語化することも大切です。振り返りを必ず行い、学んだことを整理し自分の中に落とし込むプロセスを欠かさないようにします。グループワークや講義の中では、自分ごととして捉えることを意識し、積極的に考え、発言するように心がけています。

リーダーシップ・キャリアビジョン入門

行動で示すリーダーへの一歩

行動はどう捉えていますか? 行動とは、意識と能力の掛け算であり、外部からは行動のみが見えるという基本原則があります。どれだけ優れた能力があっても、意識が伴わなければその成果は具体的な行動として示されず、他者に伝わりません。 リーダーの条件は何ですか? 誰もが日々の積み重ねを通してリーダーになれると信じています。リーダーとしてふさわしいかどうかは、その人に対する信頼にかかっており、信頼がなければ誰も従うことはありません。また、プロジェクトのゴールや背景を明確に言語化する力も、リーダーとして重要な資質です。 実践で示すコツは? 良いリーダーを目指すためには、意識と能力を磨き、それを実際の行動で示す努力が必要です。どんなに多くの知識や理論を学んでも、実践しなければその価値は認められません。新しく業務を開始する際や担当者が加わる場合には、単なる業務説明にとどまらず、プロジェクトのゴールと背景を確実に伝えることが大切です。 誠実さはどう築く? 誠実な対応とは、約束を守り、他者の体調に気を配り、理解度を確認するなど、信頼を築くための行動の積み重ねです。上司とフォロワーが同じ情報を共有し、仕事をしっかりフォローすることも重要です。また、幅広い人々と積極的にコミュニケーションを取ることで、相手をよりよく理解する訓練にもなります。 学習計画は整っていますか? さらに、積読になっている本や学習領域を整理し、計画的な学習を進めることが求められます。そして、プロジェクト単位や月、週ごとの振り返りを行いながら、常にプロジェクトメンバーがゴールと背景を意識できるタスク管理や進捗管理を実践することが必要です。

デザイン思考入門

共感×問題定義で挑む成長術

共感はどう活かす? デザイン思考の5ステップを学ぶことで、全体の流れが体系的に理解できました。特に「共感」と「問題定義」の重要性が印象に残り、表面的な言葉だけでなく相手の背景や感情をくみ取って本質的な課題に迫るアプローチを再認識することができました。日々の業務において、現場の方の話を丁寧に聞く大切さを改めて実感する良い機会となりました。また、プロトタイプやテストを通じて改善を図る考え方も、提案活動に活かせると感じています。 現場の実感は何? 私の業務では、社内の各部門で発生する業務課題や非効率な業務フローのヒアリングを行い、データやデジタルの力を活用して改善提案をしています。今回の学びで得た「共感」「問題定義」「発想」「試作」「検証」の流れは、実際の現場支援プロセスに即していると感じました。特に、現場の方が本当に困っている点を深掘りする「共感」と、課題を的確に把握し整理する「問題定義」のステップは、今後のヒアリングや提案活動において意識していきたいポイントです。自分の仕事をより意味のあるものへと昇華させるヒントを得ることができました。 未来の改善はどう? 今後のヒアリング業務では、相手の状況や感情に寄り添い「共感」をしっかりと行い、話の中に潜むニーズや課題の背景を深く理解することを意識します。そして、「問題定義」の段階で課題を整理し、関係者と共通認識を持つことに注力します。必要に応じて、可視化やプロトタイプのアイディア出しも行い、改善の方向性を早期に示す工夫を取り入れます。小さな実践でも「試してみる」「やってみる」姿勢を大切にし、相手と共に課題を乗り越えていくパートナーとして活動していくことが今後の目標です。

クリティカルシンキング入門

データ分解で見つける新しい視点

データ分解の必要性は? 今週の学習では以下の点について考察しました。まず、データを分解する際には、さまざまな視点からの切り口を持っておくことが重要です。データの分解方法や細かくするやり方によって、データの見方は大きく変わり、傾向や仮説が立てやすくなります。また、多面的な視点でデータを分解することも必要です。MECE(漏れなく、ダブりなく)を用いて検証することは基本ですが、さまざまな角度から分析することの重要性を感じました。さらに、データの可視化も重要であり、グラフなどを使うことで傾向の見方が大きく変わるため、積極的に用いていきたいと考えています。 業務へどう活かす? これを自分の業務に当てはめると、以下のようになります。データを単に表にまとめるだけでなく、詳細に分解したりグラフ化することで、関連性の洗い出しに役立てられると考えます。具体的には、開発中の製品の物性データ解析を行い、改善に必要な影響因子を洗い出したり、売上と在庫のデータ推移を国やユーザーごとに解析し、仮説立てに活用したりします。また、文章データを整理し、プロセス解析と分類分けによる分析を行います。 分析に多角視点は? データ分析や分解については、自分だけで行うのではなく、他の人にも確認をお願いし、異なる視点や着眼点を参考にして分解のバリエーションを増やすよう心がけます。データを取得する際も、従来の方法にとらわれず、「本当に必要なデータなのか」という視点を意識して行います。過去のデータとの関連性も考慮に入れ、有用なデータ取得を目指します。結果に対しては、「本当か?」といった問いを繰り返し、別の視点での傾向の可能性を確認することも重要です。

クリティカルシンキング入門

情報整理で業務効率を劇的に向上させる方法

情報整理の重要性をどう感じたか? 様々な切り口で情報を分解し、要素を整理することの重要性を改めて実感しました。MECE(Mutually Exclusive, Collectively Exhaustive)の考え方を用いることで、漏れなくダブりのない形でカテゴリを設定できるようになります。これにより、分析や提案の精度が向上することを実感しています。 効果的な提案のために何を考慮すべきか? 例えば、お客様の傾向を分析するときには、業種やニーズ、提案内容など多角的な視点で考えることが重要です。業種ごとにニーズが異なるので、それぞれに応じた提案をすることで、より効果的なアプローチが可能になります。 業務の効率化には何が必要か? また、自分の業務や時間の使い方についても、同様に多面的に考えることが求められます。こうした考え方を定着させることで、より効率的に業務を進めることができるようになります。具体的なフローを考え、その進め方についても見直すことで、業務の効率化が図れることを感じました。 案件成功へのパターンは? さらには、案件の進め方についても同じアプローチが有効です。異なるパターンを検討し、それぞれのパターンが成功する可能性を考えることで、「これなら」という勝ち筋を見つけることができます。こうしたプロセスを経ることで、実際の提案がより具体的で説得力のあるものとなり、お客様に刺さる提案ができるようになります。 MECE活用の意義とは? このように、MECEの考え方を取り入れ、情報を整理し分析することの意義を再確認できました。今後もこの手法を活用して、より効果的な業務遂行を目指していきたいと思います。

デザイン思考入門

定性分析で見える現場の真実

定性分析はどう整理? 現在、自社の業務改善のための分析を進める中で、これまで漠然としていた内容が「定性分析」であったことに気づき、大きな発見となりました。業務のやり方は数値で把握しにくいため、現場での観察やインタビューを通じて状況を捉え、得られた情報から実態を明らかにする必要があると感じました。また、コーディングにより一次コード、二次コードと分類し、フレームワークやプロセスに落とし込む方法を実践することで、今後も学びを深めていこうという意欲が湧きました。 顧客課題をどう捉える? 顧客課題仮説の導出は非常に難しいと実感しました。定性分析でコーディングを進める際、観察やインタビューから得られる情報が十分かどうか不安になるとともに、ペルソナやカスタマージャーニーマップの捉え方によって仮説の内容が変わる点も大きな気付きでした。今回の講義で学んだのは、顧客課題仮説を広く捉えるのではなく、焦点を絞り「ユーザー」「状況」「課題」「ソリューション」という具体的な文書化を行う手法であり、その手法は非常に有効だと感じました。 問題本質をどう捉える? さらに、「問題の本質を捉える」から始まり、洞察の整理と可視化、顧客課題仮説の作成、ユーザー中心の視点の維持、そして検証と改善という流れを作ることの重要性を学びました。定性分析では、プロセスやフレームワークの構築により、定量分析で検証すべき仮説が明確になるという点も理解できました。実際の現場での観察からは、ユーザー自身が気づいていない暗黙知に触れることができる有効な手法であることを実感しました。今後はこれらの経験を活かし、顧客に対する課題分析をさらに実践していきたいと思います。

データ・アナリティクス入門

仮説から行動へ!解決の近道

問題分析はどうする? 実際のビジネスでは、問題の要因が複雑に絡み合っており、「正しい」原因の究明はほぼ不可能です。そのため、原因の目星が立った段階で早急に対策を試してみることで、解決に近づけると感じました。データ収集と分析は重要ですが、what、where、whyがある程度把握できた時点で、howのアクションを起こしながら問題の原因を探ることが大切だと思います。こうしたアプローチの中で、A/Bテストは特に有用です。 仮説検討のコツは? また、原因の仮説を考える際には「対概念」を活用することが効果的であると感じました。問題に関連しそうな要素をリストアップするだけでなく、それ以外の視点にも目を向けることで、思考の幅を広げ、戦略全体の問題点やその他の要因を整理することが可能になります。 迅速な対策は? この「Howを試しながら問題の原因を探る」考え方は、変化の激しい現代の業務において非常に有効です。たとえば、定期的に行われるストレスチェックで高ストレス者が多い組織があった場合、原因を探り続けていると年度交代や組織変更で状況が一変してしまう恐れがあります。したがって、原因がある程度見えてきた段階で素早く打ち手を実行し、問題解決に向けたスピード感を持つことが求められます。 データ準備は万全? さらに、現在担当している業務において問題解決の4ステップを進める際には、どのようなデータが必要かをあらかじめリスト化しておくことが重要です。必要なデータがすぐに揃わない状況では、検証に時間がかかり、迅速な対応を妨げる可能性があります。事前に想定して準備を整え、howの実行に至るまでをスムーズに行いたいと考えています。

リーダーシップ・キャリアビジョン入門

リーダーシップ向上への自己改革の旅

どうやって自分と向き合う? 自身の価値観を振り返ることで、目指すべき自分の姿に対して、どの部分が足りていてどの部分が不足しているかを認識できました。現在、目標に向かってメンバーとの細かなコミュニケーションは意識して実践していますが、伝えたままになってしまう場合もあることに気づきました。そのため、フォローアップまで含めてのリーダーとしてのコミュニケーションが重要であると再確認しました。 広い視野で育成するには? また、仕事を進める中で、マーケット環境や世の中の変化に対してもっとアンテナを高くして、広い視野からメンバーの育成に向けた指導を行う必要があると痛感しました。今回の講義ではロールプレイング演習があり、メンバーへの評価を伝える際には、しっかりとしたストーリーを事前に整理し、相手に自発的に考えさせ、足りない点を理解してもらい行動を変えるための導きを考えていくことが大切だと感じました。 面談で信頼を築くには? 私は年3回の面談で、業務の振り返りや評価の伝え方を改善し、相手がしっかり受け止められるように対応していきたいと考えています。また、メンバーの中には、私の考えや思いを直接伝え、その考えに至った経緯などを共有することで、納得して自発的にリーダーシップを発揮できるよう後輩を育成したいと思っています。 面談においては実際に時間を作って、これらのことを実践していきたいです。また、現在在宅勤務が続く中でチーム全員が揃うことが難しいため、メールや個別電話を活用し、丁寧に時間を取る工夫をしたいと思います。多忙な中でも、伝えることにしっかり時間を設け、チームメンバーの意識が統一されるよう心がけたいと考えています。

データ・アナリティクス入門

業務の混乱をデータ分析で解消する挑戦

データ分析は日常にも必要? データ分析は、ビジネスだけでなく家電製品の購入など日常生活でも無意識に行われており、身近な行動の一部です。ビジネスの場では、定量分析が非常に有用です。一方、日常生活では感覚や好みなど定量化できない要素も分析項目になり得ます。 データ分析の目的とは? 重要なのは、データ分析は目的ではなく、目的達成のための手段であるという点です。ただ数値を比較したり並べたりするだけではなく、データに解釈を加えることで初めて目的に沿った活用が可能になります。したがって、他の業務と同様に、データ分析の際にも目的を考えることが大切です。また、分析したデータを使用する相手と目的を確認することも重要です。 職場のデータ環境は? 現在の職場では、データ分析を行いながら業務を進める人がほとんどいません。業務の担当も定まっておらず、情報を共有する環境も整っていないため、分析に必要なデータが揃っていないと感じています。入社して半年経ちますが、過去のデータ(案件、契約金額、契約終了後の顧客評価など)や取扱製品の情報が一覧になっておらず、それぞれの資料を見るか人の記憶に頼るしか方法がないことに難しさを感じています。 必要なデータの収集方法は? まずは、分析に必要なデータを集めて整理することが必要です。その後、競合との差別化や取引業者の選定など、目的を設定した上で必要なデータ分析を行います。具体的には、人の記憶に頼っている情報を可視化し、自分が入社してから苦労してきた過去のデータや取扱製品の情報を整理します。その上で、現在の会社の課題を意識し、その課題解決のために必要な分析を進めていきたいと考えています。

データ・アナリティクス入門

実体験から学ぶ問題解決の秘訣

理想と現実の違いは? ありたい姿と現状のギャップを整理し、問題点を明確にすることが非常に大切だと感じました。キャリアに関するレクチャーではよく耳にする言葉でしたが、実際には問題解決の着手点としてその意義を強く実感しました。講義の中には「目についた問題に手をつけるのは運であり、経験がある場合のみ解決可能なケースもある」という話があり、新たな場面ではこの教えが実際に有効であると感じました。 MECE実践はうまくいく? また、MECEの「漏れなく、ダブりなく」物事を切り分ける考え方ですが、頭では理解していても、実際に実践する際はその徹底が難しいと感じました。紙に書き出すなど、訓練を重ねることでスキルとして定着させる必要があると実感しています。 根本原因の探し方は? さらに、分析に留まらず、隠れている真因を特定するという視点が問題解決の前提として重要であることを認識しました。目の前のトラブルや課題に対して、対症療法や思いつきに頼るのではなく、根本原因を追求して解決を導く行動指針として、この講座の内容を日常業務に取り入れたいと思います。 庫内整理の対策は? 具体例として、庫内在庫の整理においては、庫内が満杯になり在庫の格納が難しくなった場合、調達部門に入荷抑制を依頼する必要があります。その際、MECEの考えを活用し、商品の特徴に応じて分類することで、どの商品が庫内を圧迫しているのかを特定することが求められます。 作業エラーの真因は? また、作業エラー、特に誤出庫の原因を特定する場合も、作業員が実施している一連の作業を漏れなく、ダブりなく羅列し、原因を明らかにする手法が必要であると学びました。

戦略思考入門

業務効率化と顧客対応の統合術

会社の繋がり方とは? 山田さんの視点で描かれた親身になってくれる会社、先輩との繋がりのある会社、会社間の繋がりが説明されており、次第に定量的な価値にシフトしている様子がとても印象的でした。利益額や工数を基にした判断基準は、今後の顧客対応に役立つと思いますが、その時にロジカルに捨てる判断が本当にできるのかはまだ疑問です。組織が大きくなるにつれ、創業メンバーが行っていた業務が惰性で残ることがあります。しかし、新しい意見をしっかり受け止め、必要のないものはきちんと捨てるようにしたいと思います。 新規事業の挑戦とは? 私の部署は新規事業を扱う部隊で、現段階では売上高や利益率のデータが十分に揃っていないため、定量的な優先順位を設定する朝の時間はありません。現在は、顧客の事業規模(売上高)と自律性で簡単な優先順位を決めていますが、リソースの逼迫が進むにつれて、どこかで切り捨ての判断が必要になると思います。 業務効率化の必要性は? 社内にはまだ多くの無駄な業務がありますので、社内プロセスを効率化し外注化を進めたいです。一方で、社外のお客様の優先順位付けは後回しにしたいです。役員からは売上げ見込みを試算するように指示されていますが、最初から事業規模が一定以上の特定業界の顧客にターゲットを絞っているため、現時点で売上見込みが少ない企業を即座に捨てる判断には激しないかもしれません。しかし、「なぜその顧客と取り組んでいるのか」は将来的に問われるでしょう。 優先順位をどう整理する? まずは、現顧客リストの取り組み状況から再度売上見込みを試算し、優先順位の妥当性を客観的に説明できるよう整理していきたいと思います。

「業務 × 整理」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right