データ・アナリティクス入門

まずは基本!仮説で切り拓く学び

仮説はどのように考える? 仮説を考える際には、複数の仮説を立てることと、それぞれの仮説に網羅性を持たせることが重要です。また、反論を排除するためにも必要なデータを集め、仮説同士を比較検証できるようにすることを忘れてはいけません。 仮説定義はどうなってる? ビジネスの現場における仮説とは、ある論点に対する仮の答えを示すものです。仮説は、目的に応じて「結論の仮説」と「問題解決の仮説」に大別され、時間軸によって仮説の内容が変化します。 戦略はどう変化してる? マーケティングにおいては、プロモーションの戦略がIT関連の技術発展によって大きく変動する現状を踏まえ、トレンドを正確に抑えることが重要です。同時に、顧客満足度を非常に高いレベルに引き上げることでブランド価値を高めることが求められます。 実施前に何を検証すべき? 実際、分析の段階で仮説を立てずに作業してしまうことが多いと感じました。そのため、より網羅的に情報を確認するためにも、クリティカルシンキングを意識することが有効だと実感しています。これまでフレームワークの活用に対して懐疑的な面もありましたが、まずは基本に立ち返ることが大切だと感じました。 新施策の仮説検証は? 新しい施策を進める際には、4Cの視点を取り入れて仮説を立て、その仮説に基づいて必要なデータを収集することが有効です。データ収集の際は、自己のバイアスに捉われることなく、網羅的な情報収集を心がけるよう努めています。

データ・アナリティクス入門

問題解決の視点を広げる大切さ

プロセスの問題をどう特定する? プロセスの問題を明確にするためには、各プロセスを分解してそれぞれの率などを分析し、どこに問題があるのかを確認することが有効です。また、仮説を考える際には内部要因と外部要因の両方を考慮することで、視野を広げることができます。 A/Bテストの成功法は? A/Bテストを行う際は、一つずつ要素を変えて精査することが重要です。時期的な要因に左右されないためにも、同じ期間に同様のターゲットに対してランダムに行うのが良いでしょう。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 WEB広告でのA/Bテスト活用法 WEB広告においてもA/Bテストを活用し、広告の精度を高める努力を続けますが、時期や施策ごとに単に更新するだけではなく、施策展開から販売までのプロセスを分解し、どこに業務プロセスの問題があるかを分析することが重要です。 効果的な問題解決の取り組み方 解決策を決め打ちするのではなく、「What」「Where」「Why」「How」の各プロセスを意識的に取り組むことが求められます。問題解決のプロセスを意識的に取り組み、定着させることが必要です。 チームで知識を共有するには? また、WEEK5の内容をチーム内に共有し、良い切り口を持てるように常にアンテナを張り、これと思ったことを書き留めることも大切です。年末に向けて打ち出す販促施策においても、A/Bテストを試みたいと思います。

クリティカルシンキング入門

思考をアップデート!挑戦の日々

今後の学びはどうする? 第一週目は、今後の学びの進め方やクリティカルシンキングを学ぶ目的が明確になったと感じました。多くのハウツー本がある中で、改めてクリティカルシンキングを学ぶことで、自分の思考のOSをアップデートし、自身を喜ばせることにつながると思います。時間が有限である以上、限られた時間で最良の意思決定を行い、今情熱を注いでいる事業を飛躍させたいと考えています。 3つの視点はどう活かす? 今週は、クリティカルシンキングの基本的な枠組みとその必要性について学びました。ビジネスの現場では、もう一人の自分とも言える視点を持ち、3つの視点を効率よく活用することで、ビジネスを推進し、目の前の人々に影響を与える力を養えると実感しました。 実行評価はどうする? また、クリティカルシンキングは目標設計や軌道修正における意思決定に有用だと感じています。現状を正しく把握し、問題解決に導くための適切な解決策を見出すことができるためです。現在、期初に目標設計に注力していますが、いつまでも考え抜くのではなく、実行フェーズで正しい評価基準をもとにビジネスを進めることが必要だと思います。 自問自答は意味ある? さらに、日々のビジネスアクションにおいては、1日に何度か「それって本当か?」と自問自答する習慣を持ちたいと考えています。他人の意見にすぐにYESと言うのではなく、自分自身の意見の背景やロジックを明確にすることで、より堅実な判断ができると思います。

データ・アナリティクス入門

数字が紡ぐリアル戦略ストーリー

数字の意味は何だろう? 分析のアプローチについては、ただ単に分析を進めるのではなく、数字に基づくストーリーを意識することの重要性を実感しました。統計データを見る際にも、平均値だけでなくばらつきを把握することで、より正確な判断ができると感じています。データ全体の傾向を理解した上で、平均、中央値、最頻値といった代表値から最も適切なものを選ぶことが大切です。 課題解決の鍵は? また、顧客の課題に対して解決策を提案する場合、やみくもな分析ではなく、具体的な数字に裏打ちされたストーリーによって、提案の確度を高め、顧客の納得感につなげることが求められると考えています。顧客自身が「これなら解決できる」と信じ、実行に移していただくためには、具体的で説得力のある根拠が不可欠です。 戦略の軸は何か? さらに、これからある不動産ブランドの戦略を分析する際には、まず「何を知りたいのか」という問題意識をはっきりさせ、最終的にどのような結論に導きたいのかを明確にすることから始めます。その上で、価格帯やエリア、スペックなど細かい情報に分解し、必要なデータが取得可能かどうか確認することが大切です。 仮説はどう練られる? 次に、取得したデータをもとに、なぜその戦略が採用されているのかという仮説を立て、検証の優先順位をつけながら実態を深く理解していく流れが有効だと感じました。こうした手法を通して、現実に即した分析が行え、説得力のある結論に結びつくと確信しています。

データ・アナリティクス入門

理論を実践に変える学び

講義はどう実感? これまでの講義やワークを振り返る中で、思考が体系化され、頭の中がすっきりと整理された印象を受けました。いくつかのフレームワークについては既に知識がありましたが、実際の事例に当てはめて考えることで、ただ「知っている」段階から実際に使えるかどうかが別問題であることを実感しました。何度もアウトプットすることの大切さを改めて感じました。 契約データの見方は? また、各種施策を検討する際には、過去の契約データを分析する場面が多くあります。その際、ロジックツリーを用いて漏れなくダブりなく問題を整理し、複数の仮説を立てることの重要性を再認識しました。特に、契約データの項目選定や社外データの活用といった、目的達成に必要な分析手法を実践する意義を感じています。 SQL学習の計画は? 今後は、社内データを正確に取得するためにSQLの習得にも力を入れます。具体的には、オンライン講座を活用して4月から6月頃までに学習を完了させる予定です。 手書きの効果は? さらに、ロジックツリーやその他のビジネスフレームワークについては、パソコン上で作業するのではなく、あえて手書きで取り組み、自分の中に定着しているかどうかを確認しながら実践していきたいと考えています。 アウトプットをどう伸ばす? 実践的なデータ分析のアウトプット力を強化するため、関連する書籍や講座を活用し、9月までに数多くのアウトプットを経験して実力アップを目指していきます。

データ・アナリティクス入門

比較が拓く新たな自己発見

比較ってどう進める? データ分析の根本は比較にあります。分析を行う際には、目的に応じた条件を揃えた比較対象を設定することが大切です。目的が明確であれば、適切な比較対象の選定が可能となり、分析の精度も向上します。 直感の表現は? また、直感的な感覚を自分の言葉で言語化することも重要です。「なんとなく」という漠然とした感覚を具体的に説明できるようにすることで、分析結果に説得力が生まれます。 定性定量はどう? 定量・定性の両面のデータを活用し、定量データの尺度の違いや特徴を把握することも必要です。さらに、分析の目的に合わせた可視化―例えばパーセンテージ表示やグラフ化―を行うことで、結果をより理解しやすく提示することが可能となります。 分析手順は何? データの加工や分析のプロセスでは、まず目的の確認と仮説の立案を行い、その後に結論へと導く一連の手順が求められます。この流れをしっかりと実行することで、効果的な分析と説得力のある結論が導かれます。 活用場面で何をすべき? 具体的な活用場面としては、営業やチームから依頼された市場データの提供、他社への施策提案、自社商品の価格検討などが挙げられます。これらの場面では、まず目的や期日などのゴールを明確に確認し、必要な条件を的確にヒアリングすることから始め、比較対象の設定、データの収集・加工・分析を実施します。最後に、分析の目的に沿った可視化手法を用いて、結論を提供することが求められます。

リーダーシップ・キャリアビジョン入門

エンパワメントで輝く自律リーダー

エンパワメントとは何か? エンパワメントという言葉は以前から耳にしていましたが、今回、具体的な意味や方法について学ぶ機会がありました。目標達成に向け、組織の構成員が自律的に行動するためのリーダーシップ技術として、エンパワメントの重要性を実感しました。 共有と支援の秘策は? 具体的には、まず目的やビジョンを共有し、対象者の状況を把握した上で、適切な仕事を依頼するというステップがあり、必要に応じて支援を行うことがポイントです。これらのプロセスでは、常にコミュニケーションが不可欠であると再認識しました。 整理で何が変わる? また、実際の業務においても、無意識にエンパワメントの考え方を取り入れていた部分があったと感じますが、今回改めて整理することでその意味をより深く理解できました。今後は、目標やビジョンをしっかりと伝え、相手に理解・納得してもらうことを重視したいと考えています。その上で、各メンバーの状況に応じた仕事の依頼や、適切なフォローも行っていく所存です。 チーム内でどう調整? まずは、コミュニケーションの時間を意識的に確保し、メンバーの特性やモチベーションを理解することから始め、それぞれに適した目標や計画の策定に取り組んでいきたいと考えています。一方で、仕事の優先度が高くないメンバーや、価値観の異なるメンバーに対して、どのように目標を共有し計画を立案すればよいのか、その具体的な方法を知りたいという思いもあります。

デザイン思考入門

顧客視点で描く安心サイト改革

ホームページの改善ポイントは? 自社のホームページを改めて顧客目線で確認したところ、改善すべき点が見えてきました。特に、ターゲットとなる65歳以上の高齢者やその家族に配慮したデザインやレイアウトが十分でなく、文字が小さかったり背景と重なって見づらい部分があると感じました。また、各コンテンツの配置が分かりにくく、利用者が最も知りたい「アクセス」や「診療科目」の情報が深い位置に隠れている点も問題です。こうした点を患者さん目線に立って改めて整理する必要があると感じました。 プロトタイプ作成の意義は? また、プロトタイプの作成については、実際の作成機会は少ないものの、今後当院のミッション・ビジョン・バリューを展開するツール(ポスターやメッセージカードなど)の作成時に、いくつかのアイデアを出し合い、関係者と共有しながら進めることで手戻りを防ぎたいと考えています。 さらに、ホームページを作成する際には、こちらが伝えたい情報だけでなく、利用者が何を求めているかを踏まえ、双方の目的に沿った内容を掲載することが重要であると学びました。改めて顧客視点で当院のホームページの改善点を関係者と議論していく必要があると思います。 プロトタイプの制作に関しても、途中でこまめに作成し、関係者からフィードバックを受けることが大切だと感じました。細かい意見交換や認識のすり合わせを行うことで、手戻りや追加要件の発生を抑え、無駄な時間やコストの削減につながると考えています。

データ・アナリティクス入門

データ可視化で見えてくる新たな発見

分析の視点を再確認する方法とは? 前回の学びから、分析における視点として5つの要素、すなわち「インパクト」、「ギャップ」、「トレンド」、「ばらつき」、「パターン」に分けて考えることが有用であると再確認しました。数字をただ眺めるだけでは気づきが得にくい場合でも、目的に応じた適切な可視化を行うことで数字の意味を見出すことが容易になります。特に、可視化は自分の理解を深めるだけでなく、説明相手の理解や認識の統一にも役立つと感じました。 平均の取り方をどう活用する? 普段の仕事でもデータを扱っており、どのような代表値を用いてその数字の塊を特徴づけて解釈するかを意識していましたが、この学びを通じてさらに細かな平均の取り方を再認識しました。特に幾何平均の活用については、施策立案や来期戦略、予算作成の際に大いに役立ちそうです。例えば、年間の応募推移を過去5年間にわたって見たときに、どのようにトレンドの推移を適切に抽出するかなどを具体的に考えることができました。 日々のKPI管理で使える可視化手法は? また、日々のKPI管理についても適切な可視化が求められます。現在は折れ線グラフで推移を見ていますが、前年比や積み上げグラフなども必要かもしれません。ユーザーの行動を分析する際には、ヒストグラムを活用して傾向を掴むことも考えています。具体的には、インストールからコンバージョンまでの期間別ユーザー数を把握することで、より詳細な分析が可能になると考えています。

クリティカルシンキング入門

クリティカルシンキングで自分を見直す方法

なぜ客観視が必要? クリティカルシンキングは、自分自身を客観的に見るためのもう一人の自分を作り出すことです。その目的は、何のために考えるのかを明確にし、一歩引いた目線で自分を眺めることで、目的に合った回答ができているかを確認することにあります。 どうして偏見を防止? 私たちは無意識に思考の偏りを持ってしまうことがあります。それを防ぐためには、頭の使い方を知り、反復トレーニングを重ねることが大切です。私は、この6週間、これまでと異なる頭の使い方を意識し、しっかりとトレーニングに励むつもりです。 顧客要求は本質か? 新規事業の立ち上げフェーズでは、顧客要求を整理しながら商品企画を進めています。顧客要求が本当に解決すべき課題に対するソリューションになっているかを確認するため、日々議論を重ねています。顧客との対話を通じて要求を導き出してきましたが、さらに深い議論を重ね、本質に近づきたいと考えています。また、議論が脱線しがちなため、「今日の議論の目的は何か」を常に意識し、必要に応じて軌道を修正したいです。 結論の真意は何? 議論を進める上で意識すべきこととしては、以下の点が挙げられます。まず、今この瞬間の議論が目的に合っているかを確認すること。そして、直感や思いつきで判断していないかを反省し、もう一人の自分がその考えをどう評価するかを考えます。さらに、現在の結論が本当に正しいのか、少なくとも「なぜ」をあと3回考えてみることが重要です。

クリティカルシンキング入門

本質を見極める力の重要性

本質的な課題とは? 今の状況において考えるべきことや答えを出すべき問いを「イシュー」と呼びます。イシューを明確にすることで、本質的な課題解決の道筋を立てることができます。また、イシューを明確にするためには、数値という裏付けが重要です。 イシューを特定するポイントは? イシューを特定する際には以下のポイントを押さえましょう。 1. 問いの形にすること。 2. 具体的に考えること。 3. 一貫して押さえ続けること。 話し合いの場で注意すべきことは? たとえイシューを特定しても、気づかないうちにそれが逸れてしまうことがあるため、立ち返ることが大切です。また、一貫してイシューを押さえ続けることを念頭に置いてください。 会議や打ち合わせなどの話し合いの場では、議論が脱線しないように、答えを出すべきイシューを特定し、メンバーで共有して臨むことが重要です。 ミスの際に見直すべきことは? ミスが起きたとき、修正が目的になってしまいがちですが、もっと本質的な部分に目を向けることが必要です。課題解決にあたり、何をイシューとするかを見極める力をつけることが求められます。 データを活用したイシュー特定法は? イシューを特定する際、思い込みからイシューを見誤ると望む結果は得られません。可能な限り数値的根拠をもって特定することを心掛けましょう。具体的な方法として、ピラミッド・ストラクチャーを用いてイシューの書き出しと整理を行うことが有効です。

データ・アナリティクス入門

未来の問題解決力を養うナノ単科の魅力

問題解決の4ステップとは? 問題解決の4ステップについて確認しました。これらのステップは、問題の明確化、問題箇所の特定、原因の分析、そして解決策の立案です。問題が発生した際には、このフレームワークに従って課題の本質と原因を十分に把握し、それを踏まえた解決策を検討することが重要です。ビジネスではスピード感が求められることが多いですが、原因分析を急いでしまうと誤った解決策に至る可能性があるため、注意が必要です。 仮説設定のポイントは? また、仮説を考える際のポイントには、複数の仮説を立てることや、仮説同士の網羅性を持たせることがあります。決めうちせずに、異なる切り口で仮説を立てることが大切です。仮説は他の可能性を排除した先にあるため、データによる裏付けも重要です。特に社会課題を扱う際には、原因の仮説が「分かりやすい」ものに走りがちですが、常に複数の可能性を視野に入れてデータを検討することが必要です。 フレームワークをどう活用するか? 提案やブレストの際には、今回のフレームワークを取り入れたいと考えています。また、チーム内で問題解決の4ステップを共有し、データの取得方法を数字だけでなく、アンケートや口頭での情報収集など選択肢を広げて検討することも重要です。 仮説設定が重要な理由は? 特にデータ分析では「仮説設定」が最も重要であり、クリエイティブが求められる分野だと感じています。今後、この点を重点的に取り組みたいと思います。

「必要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right