クリティカルシンキング入門

クリティカルシンキングで自分を再発見

振り返りの3つの学びとは? WEEK1の受講を通じて感じたこと・印象に残ったことは主に以下の3つです。 1. 考え方には偏りがでること 2. クリティカルシンキングは考え方の土台であること 3. 大事になってくるのは『3つの視』 これらが非常に大切なことだと感じました。 直感からの視点転換が重要 以前の私は、考え方が直感に偏っていました。しかし、その直感から一度立ち止まり、「本当にそれで大丈夫か?」と考えることの重要性に気づきました。自分の考えを客観的に見直し、異なる視点で切り口を変え、分解して突き詰めていくことが必要です。このプロセスが問題や課題の根本に辿り着き、チームと自分自身を正しい方向に導いていくのだと確信しました。今後もこの考え方を意識し、自分の土台を常にアップデートし続けていきます。 具体的な実践方法は何か? 具体的な実践としては以下の3つを考えています。 1. 業務改善の提案:先方が感じる課題の根本的要因を考え、適切な提案を行います。 2. 業務設計の構築:目の前の手法に固執せず、本質を見落とさないように設計時の目的や課題点を多角的に分析し設計します。 3. 繰り返し行動する:これまでの思考や行動の習慣から脱却し、考える機会が訪れた際には必ず一度立ち止まり、客観的に考える力を養います。 記録と分析のプロセスをどう活かす? また、考える際は頭の中だけで解決しようとせず、一度文字に起こして考えを整理します。外に出すことで、異なる視点から物事を見ることができ、より客観的かつ分解しやすくなるため、この方法を実施していきます。

クリティカルシンキング入門

実践から見えてくる本当の課題

どんな問いで課題に迫る? 適切な問いを立て、課題を捉えることの大切さを改めて学びました。ファストフード店のワークでは、要素を分解し、特定した課題に対して打ち手を考えるプロセスを体験できたことで、理論と実践のつながりを実感しました。 振り返りのポイントは? また、観光課の課題に取り組む中で、スライドの作り方の振り返りを通じて、実際に打ち手を導き出すプロセスをたどる経験ができたことも大きな収穫でした。 データで本質を探る? マッチングアプリの企画を検討する際には、定量データからイシューを見出す必要性を強く感じました。業務を進める上で課題となっていた部分が、一連のプロセスを体験することで明確になり、今後は学んだ一つ一つのステップを実務で活かしていきたいと考えています。特に、データを見るとメッセージや問いの本質が薄れ、グラフ作りに偏る傾向があるため、何を伝えたいのかが十分に伝わらなくなることを痛感しました。そこで、学びの各ステップを意識しながら行動する必要性を改めて認識しています。 目的と課題の整理は? 目的を明確にした上で前提を整理し、その前提に立って課題を整理することが、事実を数値から捉え直し、関係者全体の意識を合わせる準備になると感じました。伝えたいメッセージは、事実をしっかりと伝えることから始まるため、単にグラフを作成するのではなく、構造分解して課題を定量的に評価するプロセスを重視したいと思います。KPIツリーの活用により、数値をもとに比率や増加率を取り入れながら、課題の発見につなげる手法の大切さを実感しています。

クリティカルシンキング入門

グラフ選びで差がつく伝達力

伝えたい内容は? メッセージを意識したグラフ選びの重要性を強く感じています。グラフ作成が目的ではなく、伝えたいメッセージを正確に届けることが本質です。誤ったグラフ選びは、情報の読み取りを難しくし、本来伝えたい内容が伝わらなくなる恐れがあります。また、メッセージは色使いやアイコン、文字フォントなどの要素によって受け手に与える印象が変わるため、これらの工夫も大切です。 データの本質は? データを扱う業務においては、示唆や事実の取り扱いが鍵となりますが、何よりも大切なのは、適切なメッセージを抽出することです。事業で本当に伝えるべき内容をデータから見出し、わかりやすいグラフや表現で正確に伝えることを心がけています。データはあくまでメッセージ伝達のための手段であるため、無理に装飾したり加工したりするのではなく、本質となるメッセージをしっかり押さえることが必要です。 受け手は誰? また、伝えたいメッセージは、受け取り手ごとに考えるべきです。事業や状況を踏まえ、緊急度や重要度を加味して絞り込むことで、ビジネスに必要な情報が確実に伝わるようにすることが求められます。何が言いたいのかわからないという状況を避けるため、伝えたいメッセージとの整合性を意識した表現力を磨いていきたいと考えています。 構造化で進化? さらに、現在のChatGPTは文章の構造化や整理に大いに役立っています。ワークのプロセスを通してPDCAサイクルを回す中で活用し、その結果を同僚とのディスカッションを通じてさらに改善し、アウトプットの精度を高めていきたいと思います。

マーケティング入門

競合を超える新市場への挑戦と学び

商品に新たな用途を見つけるには? 今週の事例では、既存の商品に新たな用途を見つけることで新しい市場を開拓したことが印象的でした。また、別の事例ではポジショニングの軸を巧みに設定し、新市場を発見したことに学びがありました。これにより、既存の商品でもポジショニング・ターゲティングを変えることで、新たな顧客層や市場に参入できることを理解しました。 自社での新価値創出の難しさとは? しかし、これを自社に置き換えて考えると、他社には真似できない複数の強みから新たな価値を生み出し、新市場に参入することの難しさを実感します。ターゲティングに成功したY社や、手軽に挽きたて珈琲を購入できるポジショニングでヒットしたS社の事例を通じて、ポジショニングとターゲティングの重要性がさらに理解できました。 差別化と新用途のチャンス 多くの競合が存在する中で、自社の商品は異なり差別化はできているものの、その競合と同じポジショニングをとっています。差別化ができているからこそ、新しい用途を生み出し、新しい価値でこれまでにない市場に参入するチャンスがあると感じました。このため、ポジショニングマップと訴求ポイントを深堀し、まずはテスト的に自分の顧客を対象に実践してみたいと思います。 どんなターゲット層を狙うべき? 具体的には、大手コンビニから地域のコンビニ、都市部や田舎のコンビニまで、どのような商品陳列でどのターゲット層を重視しているかを確認する必要があります。そして、自社商品の新たな用途がないか?そのターゲット層に向けたリーチ方法が本当に適切か?を深く議論していきます。

クリティカルシンキング入門

自分の考え方を変える大切さに気付く

クリティカルシンキングの重要性を再確認 クリティカルシンキングはビジネスにおける重要な土台です。人間は「考えやすいこと」や「考えたいこと」を考えてしまう傾向があり、その結果、無意識のうちに考えが制約されてしまいます。重要なのは、主観的な思いつきや直観、経験に頼るのではなく、客観的に説明責任を持って考え話すことです。これを実現するためには、まず頭の使い方を知り、他者とディスカッションし、反復トレーニングすることが必要です。 思考停止をどう克服する? 現在の自分の思考は主観的であり、自身に経験のない事を考えるときに思考停止に陥ることを改めて実感しました。これまでの経歴上、答えがある事に対して取り組むことが多かったため、答えのない事について深く考えることは少なかったです。しかし、これからは悩むことを楽しもうと思います。 会話での問題抽出の重要性 また、会話のキャッチボールにおいて、会話や会議の中で論点や趣旨からずれた発言をしてしまうことがあると感じました。問題の原因を深く探り、表面的な問題だけでなく水面下にある問題を会話や洞察の中からあぶり出すことが重要です。相手にわかりやすく伝えるためには、自分自身が深く内容を考え、整理している必要があります。 無意識の行動を記録する利点とは? 常に自分を俯瞰して無意識のうちに行動することを意識すること、5W1Hを意識すること、直観的な対応を取ろうとしている時にどんな状況でそうなったかを記録することを心掛けています。抽象的な言葉を出さず、具体的に伝えることを意識するようこれからも努めます。

デザイン思考入門

作りながら磨く経営力

仕事にどう生かす? バリュープロポジションと3つの合致、ラピッドプロトタイピング思考は、日常業務にも活かせそうな考え方だと感じました。経営・組織戦略の分野では、必ずしも「もののプロトタイピング」を行うわけではありませんが、「作りながら考える」姿勢が非常に重要であると実感しました。 試作で何を知る? デザイン思考が一般教養に近づいている現状からも、プロトタイピングを単に「物」に限定するのは難しいと考えます。ビジネスモデル、カスタマージャーニー、架空のセールスレター、商品チラシなど、試作できる分野が多く存在し、「アウトプットしながら考える」癖をつけることが大切だと思います。 アイデアはどう伝える? 今回の取り組みでは、プロダクトイメージ、サービス構想、拡張機能のアイデアを絵や図にしながら考えるプロセスに取り組みました。実際にアウトプットすることで、無理なアイデアや、他の分野に拡張した方がユーザーにとってメリットが大きいという視点が多く見えてきました。 戦略転換の理由は? また、本来はあらかじめ経営戦略上で決めるべき事項も存在すると思います。激しい競争の中で従来の領域に挑むのか、あるいは新たな価値を生み出す領域にシフトするのか、いずれも議論すべきポイントです。例えるなら、100m走で新記録を狙うのか、障害物競走で柔軟に戦うのかという違いに似ています。私自身は、初めから障害物競走のアプローチを選びました。今後は、デザイン思考にとどまらず、こうしたワークが経営戦略上どのように位置づけられるのか、包括的に捉える視点がさらに必要だと感じています。

クリティカルシンキング入門

データ分解で見える新視点の魅力

数字分析の本質は? 数字を分析するとき、一つの要素だけでなく、複数の要素を組み合わせて分解することで、新たな視点が得られることがわかりました。分解することで初めて見えるものがあり、実際にデータを操作してみることの重要性を感じました。エクセルで表をダウンロードし、関数や条件付き書式を使って分析することで、数字に隠れた情報も明らかになりました。また、どの要素をどのように分解すればどんな結果が出るのかを予測しながら作業することが、分析の精度向上に繋がると実感しました。 工数分析の効果は? 具体的には、コールセンターの効率化にこの分析手法を活用したいと思います。応答時間、後処理時間、入電内容、お客様の待ち時間などの観点から、それぞれの業務にかかる工数を数値化できます。これにより、どの業務に多くの工数を費やしているのかを可視化し、効率化の余地がある業務を特定することが可能です。 多角度分析のヒントは? さらに、コールセンターでは顧客から情報を得るだけでなく、それを様々な角度で分析して新たな顧客獲得のヒントを見つけることができると感じました。こうした情報は営業やマーケティング部門でも必要とされるでしょう。どんな情報が役立つかを部署間で話し合い、共有することが重要です。 新たな要素を探す? 今後、毎月集計しているお問い合わせ内容や顧客情報を新しい要素で分析してみたいと考えています。これまではカスタマーセンターの視点で集計を行っていましたが、マーケティング部門の視点でどのように数字を分解できるかを検討し、目的に応じた分析を進めていきたいと思います。

クリティカルシンキング入門

思考の癖を超えて、新たな発見へ

自問自答の意味は? 人にはそれぞれ「思考の癖」があることを知り、とても勉強になりました。この前提を理解することで、自分自身を疑い、自問自答を繰り返す作業が思考力の向上に繋がると感じました。また、重要なのは目的を把握するだけではなく、それを「押さえ続けること」だと思いました。時折できる瞬間とできない瞬間があるため、なぜできなかったのか、単に意識が不足していただけなのかを分析し、客観的な視点を持つことを習慣化していきたいです。 業務整理のコツは? 業務への活用については、現在取り組んでいる売上などの社内データの統合・管理運用プロジェクトに役立てたいと考えています。このプロジェクトでは、情報が散乱しており、様々なツールが存在する中でどのように整理するかを考える必要があります。また、各部署の意向が混在している状況において、調整は重要ですが、その前にプロジェクトの目的や理想の状態を常に念頭に置いて議論を進める必要があると感じました。他部署の人たちにも納得してもらうために、わかりやすい論理構成や伝え方にも活用できると思います。 客観視点の意義は? まずは常に客観的視点を持ち続けることが大切です。アイデアや結論が出た際には、「本当にそうなのか」「抜け落ちはないのか」「そもそもどのような目的だったか」と自問自答し続けることが重要です。 会議をどう活かす? また、客観的な視点を持てない瞬間もあるため、その後に会議を振り返り、「もしその場で客観的な視点を持てたらどうなったか、目的に立ち返ったらどうなるか」と想像し、常に客観的視点を維持したいと思います。

データ・アナリティクス入門

データ分析で改善への道筋を見つけよう

分析の基礎を見直すには? 分析とは、データの要素を整理し、比較対象や基準を設けて比較することです。目的や比較対象が曖昧だと、分析とは言えません。データを漫然と分析し始める前に、その要素を整理し、明確な目的を持って比較することが重要です。 可視化手法の多様化を 分析の結果を効果的に見せるためには、定量データの種類に応じた加工方法やグラフの見せ方を工夫する必要があります。これまで自己流でデータを可視化してきたこともありますが、さらに多様な手法を学び、見せ方を向上させていきたいと考えています。 採用分析をどう進める? 採用に関わる分析とその対策については以下のように進めます。まず、分析の目的を明確にし、具体的な比較対象を設定することが重要です。例えば、「前週比での応募者数の変化」や「媒体別、フェーズ別の歩留まり」といった視点で分析を行います。これにより、漠然とした分析を避け、得られる洞察が増します。 データを効果的に可視化 また、データの可視化については、週次データの推移を折れ線グラフで表現したり、部署別の採用状況を棒グラフや円グラフで示すなど、データの特性に合った適切なグラフを使います。こうした方法で、データの傾向や課題がより明確になり、効果的な対策の立案に繋がります。 分析のブラッシュアップ方法 今後、目的を複数設定し、分析のための要素分解や比較対象の再設定(過去3年間や各媒体ごとなど)、統計データの整理、分析手法の見直し、結果の行動変容といった点についても改善を重ね、週次で行う分析をブラッシュアップしていきたいと思います。

クリティカルシンキング入門

データ分析で見つける新たな可能性

情報はどう整理する? データを分析する際には、まず与えられた情報をそのまま受け取るのではなく、必要に応じて自分で欄を増やし、追加の情報を作成することが重要です。そして、その情報を視覚化し、絶対値だけでなく相対値も考慮しながらデータを評価することを心がけるべきです。 区切り方はどう決める? 次に、データを視覚化する際には、データの区切り方によって見える情報が異なることを認識し、自分の仮説が事実かどうかを確認するためにどの単位でデータを区切るかを慎重に考える必要があります。一番重要なのは、データをさまざまな切り口から分解し、単純に受け入れるのではなく、再度丁寧に考え直す姿勢です。 分解精度はどう向上? 業務においては、改善提案資料の根拠を示す際、日常的に発生する内容に対して、前回よりも今回、今回よりも次回と、分解の精度が向上していることを自分で確認しながら取り組むことが求められます。また、新しい運用の実施可否を判断してもらう際や、イベントのアンケート結果を分析する際、応対品質評価結果を分析する際にも、しっかりとしたデータの準備と分析が必要です。 事実確認は万全か? 確かな事実を分析するには、必要なデータが揃っているか、十分に分解されているかを事前に確認し、その上でデータ分析を開始するようにします。これにより、ただ手元にあるデータをそのまま見るのではなく、一時停止してデータを視覚化し、仮説が事実であるかを確認することを意識します。そして、MECEなどのフレームワークを活用し、抜け漏れがないかを確認した上で結論を導き出すことを心がけます。

クリティカルシンキング入門

伝わる文章で信頼を築く

報告は伝わってる? 仕事の報告、説明、共有など、いずれの場面でも相手に伝わらなければ意味がないと考えていました。しかし、実際に自分が伝えられている内容を振り返ると、考慮できていなかった部分が多いと気づきました。日常の業務においては、メンバー間で主語を省略したり曖昧な表現が通じることが多いものの、その習慣が部外や社外の方に伝える際にも影響してしまうのではないかと懸念しています。そのため、相手の理解度や知識に配慮し、正しい日本語で分かりやすい文章を心がける必要があると感じました。 論理はどう伝える? また、論理的な文章作成の技法にも気づくことができました。伝えたい内容に加え、その背景となる情報や理由を添えることで、説得力のある文章が作れると理解しました。私たちが現在の業務で取り組む場面では、経営陣や上司に企画内容を説明し承認を得るシーンや、プロジェクト報告などで、短く明快に伝えて理解・判断していただく必要があります。自分たちには十分に理解できても、詳細を知らない役員や部外の方には伝わりにくいことがあり、何度も確認されるのは正しく伝えられていない証拠です。そこで、ピラミッドストラクチャーなどの手法も用いながら、相手に伝わる文章作成を目指したいと思います。 学びは続いてる? 今後は、報告や説明の場で学んだことを実践し、また他者が行う説明や報告の中で、どの部分が分かりやすく、どこが理解しづらかったかを自分なりに分析する習慣をつけたいと考えています。さらに、ブログなどを通じて定期的に文章を書くことで、表現力の向上にも努めていきたいと思います。

デザイン思考入門

生成AIで顧客共感の新境地

どうしてペルソナが鍵? 生成AIのビジネス活用支援の立場から、生成AIの利用方法について考えました。自ら生成AIをどのように活用するかを検討し、実際の運用で示された課題を把握することは可能です。しかし、利用するお客様ごとに使用シーンや前提知識、目的が異なるため、彼らに共感し課題を正しく理解するには、ペルソナをしっかり定義し、その前提条件や目的、状況を想像して整理する必要があります。 顧客役割シミュレーションは? また、生成AIに顧客の役割を模倣してシミュレーションしてもらう手法も有効だと考えます。ペルソナで定義したユーザーとして課題を提示してもらうことで、要件定義のプロセスに新たな視点を加えることができるため、実践的な検討に大変役立ちました。 利用後の効果は何? 実際に利用してみると、生成AIからユーザー役として現実に即した質問が提起され、単なる想像にとどまらない網羅的な事前検討ができることが確認されました。従来、ユーザーを実際に巻き込む場合、コストがかかるという課題がありましたが、生成AIを用いることで低コストで実務に近いシミュレーションが可能となり、非常に参考になりました。 今後の展望はどう? 今後は、生成AIを活用してより具体的なユーザー視点からの課題提起やシミュレーションを実践し、顧客との共感を深める戦略に活かしていきたいと考えています。さらに、生成AIを使うことでペルソナの理解がどのように進むか、またそのシミュレーション結果をどのようにビジネス戦略に反映させるかについても、今後の課題として具体的に検討していく所存です。

「必要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right