クリティカルシンキング入門

気づきと実践が生む会議の質

多角的な視点って? 質問の意図を深く考えることなく、複数の視点から答えを導こうとすると、得られる答えが大きく変わると実感しました。また、相手がどのような答えを求めているのかという視点も非常に重要であると感じました。ご教示いただいた内容は理解するの自体はそれほど難しくありませんでしたが、実際にふとした時に意識できるようになるためには、繰り返し振り返ることが大切だと思います。 会議準備はどうする? 会議のファシリテーターとして、異なる部署が参加する会議の場合、事前にどんな意見が出るか、どれだけの時間が必要なのか、そしてゴールをどこに設定するのかといった準備の重要性を学びました。今後は、この学びを生かし、会議の進行方法についてより意識して取り組んでいきたいと考えています。さらに、学んだことを常に意識し続けるための効果的な方法があれば、ぜひ教えていただきたいです。

データ・アナリティクス入門

ステップで変わる!問題解決力の磨き方

ステップを踏んで考える重要性 分析する際には、大きな点だけに焦点を当てず、ステップを踏んで考えることが重要です。ロジックツリーを活用することで、大きな問題を細分化して俯瞰できます。この手法により、自分だけでなく他の人も問題点を理解しやすくなり、様々な角度から物事を捉えられるようになるでしょう。 「なぜ」にとらわれない方法とは? 「なぜ」に注目しがちですが、大きな問題を細分化して捉えることで、複数の解決策を見つけることが可能です。ビッグデータの中から、どの数字を分析対象にするかを目的から逆算して決定することが必要です。 ビッグデータ分析の始め方 まずは、ビッグデータを理解しましょう。そこから目的を定め、分析すべき数字を選びます。ロジックツリーを利用して異なる方向からのアプローチも試みると、違う視点から全体を見渡し、新たな発見が得られるかもしれません。

マーケティング入門

熱い学び、未来への一歩

自社強みの活かし方は? ターゲティングとポジショニングにおいては、差別化を図るために自社の強みを組み合わせることや、顧客にその価値を気づかせるイメージ作り、さらにはターゲットと提供価値を結びつけるプロモーションが重要です。現代は顧客ニーズが細分化し多様化しているため、戦略として選択と集中が求められます。つまり、顧客をしっかりと理解し、同時に自社の(商品・ポジション)についても正しく認識することが、競争に勝つためのポイントとなります。 新商品はどう捉える? また、新商品や新制度については、従来との違いを明確にすることが大切です。商品のどの部分を訴求ポイントとするのかを検討し、業界全体の市場規模や成長性、競合状況を分析して自社と他社の現状を把握する必要があります。さらに、顧客視点に立って自社を分析することで、顧客ニーズをより的確に引き出すことができるでしょう。

アカウンティング入門

実践で切り拓くP/Lの扉

P/Lの理解は? P/Lの読み方に取り組む中で、苦手意識がだんだん薄れてきました。自分の会社の利益の源泉や、それを実現するための努力について考える過程で、費用や提供する価値、基本的な考え方を改めて見直す必要性を感じています。 実務確認のポイントは? まずは、実務に即してP/Lを実際に確認することにしました。まずはP/Lを目にして、そこで示される各項目を頭に入れるよう努めています。そのうえで、自社が提供している価値について考え、疑問があれば上司に確認するようにしています。また、まだ十分に理解できていない部分は関連の動画を見直し、繰り返し復習するようにしています。 販売費の仕分けは? ただ、P/Lにおける販売費や一般管理費、さらにそれらの適切な仕分けについては、依然として理解が不十分なため、今後も学習と復習を続けながら理解を深めていきたいと思います。

データ・アナリティクス入門

どのデータを集めるかが未来を決める

比較の重要性を再考する 分析の本質は比較であることを学びました。これまで、比較対象の選定や要素の統一が不十分だったため、正確な分析ができていなかったと感じます。特に、生存者バイアスがかかってしまうことが多かったことを反省しています。 実証実験で得る結果は? 新規事業を創出する部門に所属しているため、秋から行う実証実験ではデータの適切な分析と比較対象の正確な選定を心掛け、意味のある結果を得たいと考えています。また、取得したいデータの設計も行い、目的に合った実証実験を行いたいと思います。 適切なデータ設計とは? 実証実験の目的を再確認し、成功と見なされるために必要な情報を考えます。どのようなデータを取得すればよいかを設計し、それを企画に反映させます。分析の本質は比較にあることを常に念頭に置き、適切な比較対象を設定することを意識して進めていきたいです。

クリティカルシンキング入門

整理で見つける新しい視点

情報整理の目的は? 情報整理の基本として、まずは「何のために整理するのか」という目的をはっきりさせ、その上で情報を細分化し、必要に応じて加工することの大切さを学びました。その後、細かく分けたデータをグルーピングし、要約する「So What」や根拠を示す「Why So」により、情報の意義や本質を明確にするプロセスに取り組みました。さらに、全体を漏れなくかつ重複なく整理するMECEの考え方もポイントとして意識しています。 イシューの見極めは? 業務においては、イシューを的確に特定し、チーム内で共通認識を持つことが不可欠であると実感しています。また、データを加工して細分化することが、より精度の高い分析につながるため、日々の業務で実践しています。この学びは、コンサルティングの現場で求められるクリティカルシンキング力の向上にも大いに寄与すると考えています。

戦略思考入門

経済性の驚きと実践術

経済性の意味は何? 「規模の経済性」については、事象としては知っていたものの、用語としては初めて学んだため大変新鮮でした。また、「範囲の経済性」に関しては、適用する順序を誤ると、単に手薄でコストが高い状態を招く恐れがあるため、十分な注意が必要だと思いました。 活用されない理由は? さらに、場合によってはこれらの経済性が十分に活かされないケースが存在することも初めて知りました。フレームワークに依存せず、柔軟な対応が求められると感じています。 施策のタイミングは? 「ネットワークの経済性」は、顧客が広告施策を展開する際、施策のタイミングや訴求内容の決定において大いに役立つと考えられます。 育成法はどうする? また、「習熟効果」は、自社組織の運用面で、どのようなメンバーをどのように育成し、案件にあてるかという点で活用できると感じました。

クリティカルシンキング入門

分析の視点で新たな発見を振り返る

分析における多角的視点の必要性 データの分類や分析において、偏りのないように複数の切り口を考えることの重要性を感じました。そして、そこから生まれたインサイトが本当に正しいのか、網羅的に考えられているかを見極める必要もあると理解しました。これは実務でも同様で、仮説に基づいて行動する際、その仮説が正しいかどうか、考えに漏れがないかを確認することが非常に大切だと思います。自身の業務に限らず、さまざまな業界の分析を行う際にも、抜け漏れがないように、その都度確認する必要があると感じました。 データ再分類のアプローチは? また、異なるプロジェクトにおいても、共通点やどのように分類できるかを常に言語化するスキルを身につけたいと考えています。過去のアウトプットに関しても、新たな切り口でデータを再分類できないかを模索し、再検討とアップデートを続けていきたいと思っています。

データ・アナリティクス入門

平均の裏側が見える瞬間

平均計算の選び方は? これまで「平均」といえば、すべてを足して割る単純平均を想像していました。しかし、データの重要度が異なる場合には加重平均、成長率や比率を扱う際には幾何平均を使うなど、状況に応じた適切な平均値の選択が必要であると知り、目から鱗が落ちる思いでした。 散らばりの重要性は? また、データの中心を示す代表値だけでなく、その中心からどれくらい離れているかを示す散らばり(標準偏差)の重要性も学びました。これにより、数値情報をより深く理解する視点が広がりました。 広告指標の活用は? さらに、web広告の運用効率などをより詳細に分析し、目的に応じた指標を活用してデータから正確な情報を読み取るスキルを伸ばしていきたいと考えています。まずは、分散などの指標を視覚化してみることで、思わぬ面白い発見が得られるのではないかと期待しています。

クリティカルシンキング入門

会議を変えるイシュー習慣

雑談で混乱する? 会議中、時間の経過とともに雑談が増えると、どこに向かっているのか分からなくなることがあります。そのため、皆でイシューをしっかり共有し、「今考えるべきこと」を常に意識することで、会議の混乱を防ぎ、スムーズな議論の進行が期待できると感じました。 無駄な業務を省ける? また、イシューを常に意識することにより、本来やる必要のない業務を回避できる点も大きなメリットです。具体的な問いの形でイシューを表現し、その問いを軸にピラミッドストラクチャーで論点を整理する手法は、実際の課題解決に非常に役立つと実感しています。 経験以外の有効策は? さらに、イシューを適切に瞬時に把握できるようになるためには、経験を積み場数をこなすことが重要だと考えています。しかし、それ以外にどのような方法が有効なのか、今後も模索していく必要があると感じています。

戦略思考入門

直感を数値に変える仕事術

業務整理の意義は? 日常生活で定期的に断捨離を意識しているように、業務においても効率を考慮しながら不要なものを整理してきました。基本的には、利益が少なく工数がかかるものを捨てる判断基準として検討していたものの、感覚に頼っていたため、他の業務と比較しているとは言い難い点に気づきました。 新業務の疑問は何か? また、私自身は異動が多いため、新しい業務をゼロから学ぶ機会が多くなります。その際、業務を進める上で常に「なぜそれが必要なのか」「ほかに方法はないか」と自分なりに考え、疑問があれば確認するようにしています。現職では、ほとんどの回答がマニュアルに基づいていたり、前例に従っているため、マニュアルから簡単なフロー図を作ることで、同じ作業を繰り返す中でどこを改善すべきか分かりにくい状況に対し、数字で示すことが説得力を高めるのではないかと考えるようになりました。

データ・アナリティクス入門

平均だけじゃない!データの秘密

平均のメリットとデメリットは? 「平均」という概念について、その利点だけでなく短所も学びました。特に、母集団のデータが偏っている場合、平均は必ずしも母集団全体を正確に代表するとは言えません。そのため、平均値だけでなく、各個別の数値が平均からどれだけ離れているかという「偏差」に注意を払う必要があります。 データ分布はどう理解できる? まず、データを整理する際には、その分布の特徴を把握することが大切です。データが標準偏差を中心にどのように分布しているのか、また何が正常な範囲で、どの数値が異常値として判断されるのかを理解することで、日常的に得られる個別のデータに対して正常か異常かの判断が容易になります。また、やみくもに「平均」が母集団のデータを代表していると考えるのではなく、平均値が実際にデータの特性を十分に反映しているかどうかをまず確認することが重要です。
AIコーチング導線バナー

「必要」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right