データ・アナリティクス入門

仮説思考の極意を学ぶならコレ!

仮説を立てる重要性とは? 仮説を立てる際には、「複数の仮説を立てること」と「仮説の網羅性」が重要です。まず、仮説の立て方のポイントとして、「知識の幅を広げ、耕しておく」「ラフな仮説を作る」ことが挙げられます。知識の幅を広げるためには、「なぜ」を5回繰り返したり、別の観点や視点から見ることが重要です。これにより、あらゆる切り口での仮説立てができ、「複数の仮説を立てること」に繋がります。一見関係ない情報や常識はずれな仮説であっても、新しい事柄が見えてくる可能性があるため、発想を止めないことが大事です。 仮説検証の効果的な方法は? 次に、仮説を検証するポイントとして、「必要な検証の程度を見極める」「枠組みを考え、情報を集めて、分析する」「仮説を肉付けする、または再構築する」があります。例えば、3Cや4P、5つの力といったフレームワークを使い、必要な検証の程度を見極めます。その後、情報を集め、分析を行い、仮説と実際の結果が一致するかどうかを確認します。予想通りの結果でなければ、仮説の再構築を行います。 ターゲットを定めた企画立案のポイント 次に、キャンペーンの企画立案に関してです。現状としては、売上向上が目標ですが、ターゲットを定めずに漠然と企画立案を行っている状態です。これを改善するためには、ターゲティングを適切に行い、自社の強みを活かすような企画を実施することが重要です。また、プロモーションもターゲットに合わせて変化させる必要があります。 新規事業のターゲット特定はどう進める? 新規事業を行う際のターゲットの特定については、自社で持っているデータと一般的にオープンなデータを組み合わせることが有効です。さらに、アンケートなども活用して仮説を立てることが求められます。具体的なプロセスとしては、①顧客ニーズの推測と自社の課題の明確化、②仮説を立てる、③実際のデータを基にした分析やフレームワークの活用、④仮説が正しいか確認し再構築、⑤実運用、⑥立てた仮説が正しかったか効果検証、の順に進めていきます。

データ・アナリティクス入門

仮説思考が拓く学びの扉

仮説思考は何のため? 仮説思考は、効率的な分析を行うために欠かせない手法です。基本的なステップは、目的(問い)の把握、問いに対する仮説の設定、データの収集、そしてそのデータをもとに仮説を検証する、という四段階で構成されます。 どのデータを集める? データ収集の方法は大きく二つに分かれます。まず、既存のデータを集める方法として、検索エンジンや各種リサーチサイトを活用します。次に、まだ存在していないデータについては、実際に観察したり、有識者へのヒアリングやアンケートといった方法で収集を行います。 五視点はどう活かす? また、仮説思考を実施する際には、以下の五つの視点が重要です。インパクトではその影響力の大きさを、ギャップでは何がどのように異なるのかを捉えます。トレンドでは時間的な変化や変曲点、外れ値に注目し、ばらつきではデータの分布が偏っていないかを確認します。最後に、パターンの視点からは、法則性があるかどうかを見極めます。 グラフ化の手順は? グラフ化を行う場合には、次の三つのステップが有効です。まず、仮説や伝えたいメッセージを明確にし、次に比較対象を設定、そして適切なグラフを選んで情報を整理します。 経験が必要な理由は? 仮説思考については、これまでチームでの実践経験がないため、上司に相談しながら取り組むことが望まれます。一方、データ収集に関しては、企業独自の情報をうまく活用することで、新商品の開発に役立つ可能性があります。また、来月更新される免税施策に関しても、その対応方法を検討していく必要があります。 新規取り組みの課題は? 組織の一員として新たな取り組みを始めるのは容易ではありませんし、チーム全体が仮説思考の本質を正しく理解しているかどうかも不透明です。来週から開始されるデジタルのショッピングクーポンの運用にあたっては、まずデータ収集を行い、半年先や来年度の数字を分析する可能性を模索するものの、まずはデータ収集自体に時間を要する点が懸念されます。

データ・アナリティクス入門

仮説で解く!未来への挑戦

仮説分類はどう理解? 仮説の分類について学んだことで、結論の仮説と問題解決の仮説という二つの考え方を理解することができました。結論の仮説は、ある論点に対して仮の答えを示すもので、たとえば、ある飲料メーカーがノンアルコール商品の健康面へのアピールを通じて客層を拡大した事例が印象的でした。一方、問題解決の仮説は、現状の現象から原因を究明し、対策や予防策を講じるための仮説であり、データの収集と分析能力の向上が不可欠であると感じました。 仮説で説得力は増す? また、仮説を立てることで検証マインドが育ち、他者に説明する際の説得力が増すことを実感しました。エビデンスに基づく行動が、具体的な改善策の実現を後押しすると考えています。 減少原因は何? 具体的な事例としては、まず勤務先の大学において、受験者数が過去4年間で大幅に減少している現状があります。この原因を解明し、定員確保につなげるためにも、仮説の活用が大変有効だと感じています。 精神問題はどう見る? さらに、偏差値の高低にかかわらず、精神的な問題を抱える学生が増加している点にも直面しています。ADHDやASD、ゲーム依存などの問題が見られ、これが原因で学生間や教職員とのトラブル、保護者からの苦情、さらには退学や留年の増加につながっていると考えています。これらの現象について、過去の研究や調査、実践活動報告を参考にしながら、本学での適切な対策を検討するために、問題解決の仮説を立てて取り組む必要があると思います。 対策の進め方はどう? 具体的には、まず学生相談室や担任、教職員へのアンケートを実施し、各部署からの情報を集約します。次に、問題とされる事案の件数や種類、これまでの対応内容とその結果を整理し、国のガイドラインやマニュアルと照らし合わせることが求められます。さらに、他大学で実施されている取り組み事例を調査し、本学で実施可能な対策案を策定します。その際、専門知識を持った人材や協力可能な関係機関との連携も視野に入れる方針です。

データ・アナリティクス入門

仮説構築で新たな視点を得る方法

仮説構築の秘訣は? 仮説を構築し、データを活用して問題解決を進めるためには、いくつかのステップが重要です。まず、問題の発生箇所を明確にすることが必要です。具体的には、問題の所在を深掘りするために、原因仮説を立て、検証のためのデータを集めます。仮説を効果的に立てるためには、フレームワークの活用が有用です。 4Pのポイントは? マーケティングの視点では、4Pフレームワークを使って事業展開を整理することができます。製品、価格、場所、プロモーションの各要素が顧客のニーズや適正かどうかを評価します。適切なデータを集める方法としては、既存データの活用やアンケート、インタビューが挙げられます。各手法の長所と短所を理解して、目的に応じた選択が求められます。 多角的検証は? 仮説を立てる際には複数の仮説を用意し、異なる視点から網羅的に検討することが大切です。仮説の検証に際しては、比較の指標を意識的に選択することが必要です。具体的には、データを収集・分析し、仮説に説得力を持たせるためには、反論を排除する情報まで検討することが重要です。 意義はどこに? 仮説設定の意義としては、検証マインドや問題意識の向上、迅速な対応が可能となる点が挙げられます。こうしたプロセスを経ることで、自分の業務に対する関心を高めることにつながります。 販促の効果は? 販促企画の効果検証や販売目標達成の実績を見る際には、売り上げが伸び悩んでいる商材を特定し、どの要素に問題があったのかを4Pを用いて検証することが求められます。これを元に具体的な施策の効果を評価し、次の糧とすることが重要です。 実績比較はどう? 販売実績を基に、商品ごとの実績を昨年と比較し、価格変動の影響や来客数の動向、プロモーションの効果を定量的に評価すべきです。それにより、次年度の方針を検討することが可能となります。このように、精緻な分析を通じて課題を明確にし、解決策を打ち立てるための指針とすることが重要です。

データ・アナリティクス入門

本質を問い、解決へ進む一歩

問題解決はなぜ重要? 問題解決のステップである「What・Where・Why・How」は、根本的な課題解決力を高めるための重要なフレームワークであると改めて実感しました。問題解決を急ぎすぎると、いきなり「How」に飛びついてしまい、問題の本質を見失った対策に陥るリスクがあります。そのため、各ステップにおいて「なぜこの工程が必要なのか」を意識しながら、丁寧に取り組むことが必要だと感じています。 分析の目的は何? また、分析を行う際には、対象データやその性質、進行中のステップに応じ、複数の切り口やフレームワークを柔軟に活用することが大切です。視野を広げ、多角的な考察を実施する姿勢が求められるとともに、目的意識が明確でなければ、どれほど緻密な分析も意味をなさなくなります。分析の際は、「なぜデータ分析をするのか」「どの課題を解決すべきか」をはっきりと定めたうえで取り組むことが肝要です。 どう活かすべき? 今回の学びを活かせる具体例としては、施策の検証やシミュレーション、数字の未達や達成要因の分析、データの可視化やダッシュボードの作成と管理などが挙げられます。これらの業務においても、問題解決の各ステップを意識することで、仮説思考や多角的な視点を補完し、抜けや偏りのない網羅的なアプローチが実現できると考えています。 情報共有はどう? 特に、作成したダッシュボードを部署内で共有し、全員が直感的に課題やポイントを理解できるよう、視認性や意味を重視したデータの加工・構成を工夫することに取り組んでいます。今回学んだ内容は、実践と定期的な復習を通じて、他者に説明できるほど深く理解し、業務の中で確実に活用していきたいと思います。 学びを続けるには? この学習を一度限りのものとせず、継続的な行動として定着させるため、問題解決の各ステップを意識しながら、クリティカルシンキングやヒューマンスキルといった幅広いビジネススキルの向上にも努めていきます。

クリティカルシンキング入門

成果を最大限引き出す資料作成術

スライド作成に重要なポイントは? スライドを作成する上で、まずは適切なフォントを選び、状況に応じた文字の色やアンダーラインを活用することが大切です。これにより、伝えたい内容がより分かりやすくなります。また、グラフを用いる場合は、読み手が理解しやすいように、文章の内容に合わせた順序や配置を意識し、内容に適したグラフの種類を選びましょう。 読者を引きつける構成とは? 良い文章を作成するためには、タイトルやリードで読者の興味を引くことが重要です。内容そのものが目的を押さえており、冗長にならないようにしつつ、読者が最後まで興味を持って読んでくれる構成にすることが求められます。 プレゼン資料に役立つ工夫とは? 業務改善や提案などのプレゼンテーション資料では、これらの文章の工夫やグラフの活用が有効で、幅広く応用が可能です。また、取引先や社内向けのメールやチャットでも同様の工夫が有用です。特に、相手が読みたくなるようなタイトルやリードを付け、伝えるべき内容や目的を明確かつ端的に表現することがポイントです。相手にわかりやすく伝えることを常に心がけましょう。 明確な伝達のために必要なことは? 何を相手に伝えたいのかをまず明確にし、それを冗長にならないように文章化します。アイキャッチを意識し、タイトルやリードに工夫を加え、端的でわかりやすい内容に整えます。そして、文章だけでなく視覚的にも訴えられるように、グラフを活用します。その際、必要な情報やデータが過不足なく入っているかを確認することも重要です。文字のフォント選びやグラフの選択・配置などにも工夫を凝らし、読み手にとって見やすいものに仕上げます。 読み手の心を掴む資料作成とは? 最後に、相手が最後まで読んでくれる内容になっているか全体を通して確認することが不可欠です。読み手の立場に立って、自分が作成した資料が理解しやすく、興味を持ってもらえるかどうかを考えながら進めることが、良い成果につながるでしょう。

データ・アナリティクス入門

仮説を駆使して問題解決力を高めよう

問題解決のステップとは? 問題解決の4つのステップの「Where」は、問題の所在の仮説を立てることであり、「Why」に繋がっていく。今回はその「Where」について学んだ。 仮説の立て方とは? 仮説とは、ある論点に対する仮の答えもしくは、分かっていないことに関する仮の答えである。重要なポイントは、複数の仮説を立てることと、それらの仮説同士にある程度の網羅性を持たせることである。また、仮説を検証するためのデータを評価する際には、何を比較の指標とするか、意図的に何を見るかを考えることが求められる。そのため、数字を計算する手間を惜しんではならない。 検証マインドをどう育む? 仮説を考えることで、検証マインドの向上と説得力が高まり、関連することを調べることによって意思決定の精度も高まる。結果としてステークホルダーに対する説得力が向上し、問題解決のスピードもアップできる。アンケートなどを活用して情報を総動員し、考えることが重要である。また、「3C」や「4P」などのフレームワークを活用することも効果的である。 データ分析の重要性とは? データ収集においては、都合の良いデータだけを集めるのではなく、可能性を排除するために真剣にデータと向き合い、何と比較しての分析かを明確にする必要がある。会議資料や上長への報告を見返すと、実績や結果については真剣にデータを集めているが、データを元にした仮説設定や計算はほとんど実施されていない状況であった。結果だけを羅列するのではなく、それを根拠に仮説を立てるための計算や比較を行い、他の説を排除する仮説を設定することで、施策の根拠とし納得感を得られるようにする。 明日への準備は万全か? 明日が月初なので出てくる数字を元に、結果に対する複数の仮説を立て、その仮説に対する根拠を数字で計算・調査した上で問題解決の手段を考える。アンケートやヒアリングを日々実施しているが、分析に役立つアンケートとなっているか見直しも必要だ。

クリティカルシンキング入門

情報リテラシーと本質を問う力で未来を拓く

学びを再確認するには? 今週は振り返りの時間でした。 ■講座を通して学んだこと 情報を疑問視し、分析し、論理的に評価することで、信頼性を見極め、正しい判断を行うことが可能になるということを改めて学びました。 考え方を研ぎ澄ますには? ■常に頭においておき、反復練習すること 人は「自分が考えやすい方向に考えてしまう」傾向があります。そのため、思考が偏らないよう、本当にそれでいいのかを自問自答し続ける訓練が必要です。本質に迫るために「なぜ」を繰り返し、問題の根幹に到達することが重要です。 問題解決にはまず「イシューを特定する」ことが必要です。それから「問いを残し」意識し続け、「問いを共有する」ことで組織全体に浸透させます。また、信頼できるデータや根拠を用意し、論理に一貫性を持たせることが求められます。そして、異なる視点や意見を考慮してバランスを保ち、感情に流されず冷静に判断することが重要です。背景や文脈を理解し、公正で倫理的な判断を心がけることも必要です。 プロジェクトに活かすには? ■実際のプロジェクトでの適用 システム導入プロジェクトでは、毎回のワークショップでベンダーの提案について議論します。この際、ベンダーの資料を読み解き、疑問点や言葉の定義の違い、目線が合っているかの確認を行います。前提条件の確認や、トリガーとなった事実の裏にある本質を見極めることは重要です。結論を出すに当たっては、軽率な判断を避けるべきです。 自身が運営するプロジェクトでも、本質的な目的を見据えた方向性を決定し、その目的に基づいた運営内容を構想します。対象となる役員や経営層、一般社員などに応じて適したスライドの作成や見せ方、言葉の選び方に工夫を凝らします。メッセージを明確にし、ピラミッドストラクチャーで根拠を整理することで、スライドの内容が大きく変わります。慣れるまでには時間がかかりますが、毎回対象ごとにピラミッドストラクチャーを作成することが重要です。

データ・アナリティクス入門

仮説思考で問題解決力を高めよう

仮説の種類は何? 仮説は大きく2種類に分けられます。まず、結論の仮説はある論点に対する暫定的な答えや予想を示し、一方で問題解決の仮説は具体的な問題を解決するための思考の枠組みとして機能します。このように、まず事実から何が問題かを特定し、次にどこに問題があるかを仮説として立てます。その後、なぜその問題が発生しているのかを仮説に基づいて考察し、最終的にはどうすべきかを明確化します。 仮説思考のメリットは? 仮説思考のメリットは多岐にわたります。内省的な視点を持つことでアウトプットの説得力が増し、課題への意識が高まることで解像度も向上します。また、無闇にデータを探すよりも効率的・迅速に問題を解決する道筋を得られ、アクションの精度も同時に高まるのです。 真因分析って何? アプローチの一例には真因分析やゼロベース思考があります。真因分析は「なぜ」を5回繰り返して根本原因を探る手法で、目的が売上目標の達成であるときには売上の構造を商談数、クローズレート、平均商談単価の掛け算として考えることで、課題を特定します。例えば、クローズレートが低ければ、それは競合に負けているか、あるいは顧客のニーズを十分に捉えていないことが原因として考えられます。それぞれに対策を講じることで、適切な営業活動を促進できます。 真因分析はどう使う? また、真因分析は顧客への業務改善提案にも利用可能です。申請業務に多くの工数がかかる場合、表面的な解決策として人員増加や自動化が考えられがちですが、真因分析をすると記入ミスの修正プロセスの煩雑さや申請者への正しい記入方法の伝達不足といった根本的な原因が明らかになります。 情報整理のポイントは? 現在分かっていることを文章化し状況を整理することが重要です。その後、仮の仮説を立て、それを検証するために不足している情報を洗い出します。追加情報を収集する際は、チェリーピッキングを避け、公平な視点で仮説の有用性を判断していきます。

データ・アナリティクス入門

視点を超えて拡がるデータの世界

要素の重要性は何? 分析に必要な要素としては、プロセス、視点、アプローチの3つがあると学びました。前回はプロセスについて掘り下げた講義でしたが、今回は視点とアプローチに重点を置いて進められ、その重要性を実感しました。 視点の捉え方はどう? 講義では、まず視点としてデータを俯瞰的に捉えることの大切さが強調されました。一つのデータ情報に固執すると、全体のインパクトを見逃し、局部的な視点ではトレンドやパターンを捉え損ねる可能性があると感じました。そのため、まず広い視野で全体を把握し、どこを掘り下げるかを判断しながらスコープを徐々に絞っていくことが、目的達成のためには必須であると言えます。 視点の基本はどこ? 視点に関して、講義では以下の観点が挙げられました:  ・インパクト  ・ギャップ  ・トレンド  ・ばらつき  ・パターン 数値と図で説得できる? また、アプローチについてはグラフ、数字、数式を用いる方法が効果的であり、具体的な数値や図を使った分析が理解を深めるポイントとして紹介されました。 インパクトをどう捉える? 顧客のサービス利用データを検証する際には、どのセグメントが最も大きなインパクトを持っているか、また長期的な視点での変化を確認することが重要だと再認識しました。こうした視点から、インパクトの大きいセグメントに対して営業リソースを集中させたり、コンテンツマーケティングを推進する戦略も考えられます。 セグメント分析は十分? さらに、顧客セグメントの検証をより深堀りする必要性も感じました。導入ユーザーのセグメント検証においては、単に導入社数が多いセグメントだけでなく、導入社数は少ないもののインパクトが大きいセグメントが存在しないかを検討することが求められます。また、単なる属性データの比較に留まらず、実際の顧客行動をイメージしながらデータと照らし合わせて検証を進めることで、より実践的な洞察が得られると感じました。

データ・アナリティクス入門

掘り下げる力が課題解決を変える

問題解決の流れは? 問題解決のプロセスを整理するために、まずは「問題解決の4ステップ」について学びました。基本の流れは、what(問題の明確化)、where(問題箇所の特定)、why(原因の分析)、how(解決策の立案)という順番です。中でもwhereの部分では、どこに原因があるのかを深く掘り下げ、分析対象の範囲を絞ることで、原因を検証しやすくする点が強調されています。 仮説の立て方は? さらに、原因に対する仮説を立てる際には、複数の仮説を出すことや、異なる切り口(ヒト・モノ・カネなど)から考えることが重要です。これにより、一面的な見方に偏らず、網羅的な分析が可能になります。そして、仮説の検証に向けて、どのようなデータを収集するかを意図的に選定し、意味のある対象から適切な方法で情報を得ることが求められます。 データ収集はどう? また、都合の良いデータだけでなく、比較のための情報収集も欠かさず行うことが必要です。反論を排除するために、仮説に反する情報も踏まえた検討が重要で、これにより説得力のある分析が可能になります。ここでは、フレームワークとして3C(市場、競合、自社)や4P(製品、価格、流通、プロモーション)を活用する方法が示されています。 全体評価は? 総評として、問題解決の4ステップがしっかりと整理され、特にwhereの部分を掘り下げる姿勢が評価されています。今後は学んだ理論を実際のビジネスシーンに応用し、複数の仮説の中から優先順位を明確にする方法を検討することが期待されています。 進捗報告はどう? また、メンバーの進捗報告に際しては、各自がこのプロセスに沿っているか確認することが重要です。仮説が複数たてられているか、異なる視点での切り口が取り入れられているか、さらにはデータ収集が適切に行われているかを、リーダーを中心としたレビューの場でしっかりと意見交換を行い、全体の分析精度を高めるよう努めてください。

戦略思考入門

ビジネスの成功法則で固定費削減へ

法則はどう活かす? ビジネスの法則を知り、それを活用することで、一から考える時間を短縮できます。しかし、その法則を正しく活用することが重要です。自社製品の特性や季節商品の年間を通した生産量や販売量の把握をし、全体像を捉えることが必要です。 戦略は何が鍵? 事業戦略を考える際には、コスト低減の法則として、規模の経済性、範囲の経済性、習熟効果、ネットワークの経済性などがあります。例えば、製薬業界では膨大な研究開発費が必要になります。販売量が少ないと製品一つあたりの研究開発費が高くなってしまうため、M&Aを通じて事業規模を拡大しようとする動きがあります。また、範囲の経済性は、食品業界で培った技術を他の業界の製品に転用することを指します。 例外は何だろう? ただし、この定石にも例外があります。ビジネスが複雑化し、それぞれの事業をマネージするコストが高くなる場合です。この場合、事業を分割して独立した会社にすることでコストが適正化されることもあります。 法則で何が改善? 今回学んだコスト低減の法則を基に、自社の現行業務の課題に対してもともと考えていた機器の導入費自体を下げて固定費を削減し、機器の稼働率を上げる取り組みを進めることができると明らかになりました。また、ネットワークの経済性に近いサービスアイデアを検討中であり、その方向性で進めていきます。 人件費はどうする? 人件費を削減するために、業務上作業に近い内容を切り出し、派遣社員の導入も検討しています。この導入によって社員の時間が奪われ続けないよう、導入の影響を慎重に見極めることが重要です。 次の一手は? 現在、機器の導入費や維持費の算出中であり、データが出揃った時点で固定費削減と稼働率向上のために何ができるか、チームでアイデア出しを行う予定です。また、業務に近い作業の切り出しと派遣会社の情報収集も進めていきます。これらの取り組みは、来週から開始します。

「情報 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right