クリティカルシンキング入門

データ分析で未来を切り拓く学び

なぜ情報を分解するのか? 状況を解像度よく理解するためには、情報を分解することが重要です。特に、数字はグラフ化が可能なため、非常に有効な手段となります。分解を行う際にはいくつかの注意点があります。まず、加工の仕方としては、表に追加する欄を考えたり、相対値を計算したりするなどです。また、グラフを作成することで視覚を働かせることも効果的です。 多角的に見るための視点とは? 次に、情報の分け方についてですが、単に機械的に分けるのではなく、仮説を立てて特に影響力の大きい要素を優先して分解します。また、同じ状況に対して複数の観点から分解することも重要です。ある一つの視点だけでは状況を完全に把握できないことがあるため、他の視点も試すことが肝要です。 問題箇所を特定する方法は? さらに、MECE(Mutually Exclusive, Collectively Exhaustive)を意識して分解することで、問題箇所の特定を助けます。目的を明確にし、わかりやすい形で層別、変数、プロセスに分解すると良いでしょう。また、ロジックツリーを使って、仮説を立てた上でインパクトの大きい要因から切り口を考えます。この過程でアイデアを広げる際にもロジックツリーは有用です。 入学者分析で何が得られる? 具体的な応用として、入学生徒の性別、学力、地域、求めるものなどの傾向を分析することが挙げられます。これにより、入試広報活動を改善し、学校が求める生徒像に合致する生徒を獲得することができます。また、普段から数字をグラフ化する習慣をつけ、ロジックツリーなどを利用して考えを図式化することも有効で、完璧さを追い求めるよりも、実践と反復練習を重視することが大切です。

クリティカルシンキング入門

見れば納得!視覚化の魔法

視覚化の効果は? 伝えたいメッセージを効率的かつ正確に伝えるため、視覚化のポイントについて学びました。図、表、グラフを活用することで、受け手が眼で情報を確認し、二次元的に処理できる点が理解促進につながると実感しました。 グラフの見せ方は? 具体的には、グラフを効果的に使い、見せ方にも工夫を加えることで全体の流れとメッセージの整合性を図る方法を学びました。スライドでは、相手に情報を探させることなく、流れに沿って情報を提示できるよう心がけることが大切だと感じました。また、グラフは全体像の把握に役立つように配置し、時系列データなどは折れ線グラフ、異なる要素を示す場合は横棒グラフを使用するなど、状況に応じた種類の使い分けが有効です。 グラフ統合は可能? さらに、例えばX軸が共通のグラフが2つ必要な場合には、Y軸を左右に分けて折れ線グラフと棒グラフを1つにまとめるという手法も有用です。タイトルや単位の明示、フォントや色の使い分け、斜体・下線・太文字などを適切に活用することで、伝えたいメッセージに合わせた表現が可能となります。装飾も必要性を考慮し、過剰にならないようバランスを取りながら資料作成に取り組むことが求められます。 情報伝達はどう? これらの視覚化テクニックは、経営会議や上位への発信資料にも大変役立ちます。受け手が持つ情報との違いを考慮し、短い時間で効率的にメッセージを伝え、相手に理解してもらうために、今回学んだポイントを資料に盛り込むことが重要です。 伝わる資料とは? 最終的に、読み手の立場に立って資料を構成し、情報の配置や流れを工夫することで、本当に伝えたい内容が正しく伝わる資料作成を目指していきたいと感じました。

データ・アナリティクス入門

データ分析の魅力に気付く学びの旅

データ分析の目的と仮説設定 データ分析においては、「目的」や「仮説」の設定が極めて重要です。解決したい問題を明確にし、まず結論のイメージを持つことが大切です。問題解決のステップをたどる際には、何が問題で、どこで問題が発生しているのか、なぜ問題が発生しているのか、そしてどのように解決策を実行するのかを考えます。そのため、データ分析は比較対象を明確にし、もし検証データがなければ用意する必要があります。 データ収集と加工の要点は? データを収集する際には、検証に不要な情報を極力除くことが重要です。集めたデータを元に、明らかにしたいことを基にデータを加工します。この際、実数と率の両方を確認することが必要です。また、やみくもに分析するのではなく、ストーリー性を持たせ、傾向を把握し、特に注目すべき箇所を明確にすることが求められます。 仮説検証で注意すべきポイント 仮説検証においては、可能性のある原因を網羅的に仮説として挙げ、そのうち原因である可能性が高い仮説を検証します。解決したい問題を明確にし、結論のイメージを持つことが再度重要になります。検証するためのデータがない場合は、担当部署に協力を求め、データを用意することが求められます。用意したデータは実数と率のグラフで表現し、新たな発見を見つけることを目指します。ただし、やみくもな分析は避けるようにしましょう。 視覚的表現の重要性とは 常に実数と率のグラフを頭の中で描くように心がけ、色々なグラフでデータを視覚的に表現することで、新たな気付きがあるかもしれません。このようにデータ分析においては、明確な目的と仮説、適切なデータの収集と加工、そしてストーリー性を重視することが重要です。

データ・アナリティクス入門

効果的な仮説立案で施策展開が変わる

仮説立案の重要性とステップ 仮説を考える際のポイントとして、まずは複数の仮説を立てることが重要です。一つに決め打ちせず、複数案を考え、その中から絞り込むプロセスを取るべきです。また、仮説同士に網羅性を持たせるため、異なる切り口で仮説を立てることが求められます。この際、3Cや4Pといったフレームを使うことで、切り口を広げることができます。これらのフレームを定着できるように、繰り返し意識して使用することが重要です。 問題解決と結論の仮説分類 仮説はその目的に応じて、「問題解決の仮説」と「結論の仮説」に大きく分類されます。それぞれ、過去・現在・将来といった時間軸に応じて仮説の中身が変わります。仮説と検証はセットで行うことで、より説得力を持たせることができます。 効果的な施策展開への道 現在、施策展開が乱立している状況を整理し、ハンドリングできるようにしたいと考えています。より効果的かつ効率的な施策展開のためには、仮説を常に意識して立てることが必要です。現状では議論の中である程度のところで決め打ちになってしまっているように思います。より効果的かつ効率的な運営を行うために、問題解決のプロセスに沿った仮説立証を定着させ、日々の業務に意識的に取り入れることが重要です。 フレームワーク活用と効果検証 また、仮説を立てるためのフレームワークについても学び、問題や課題の提起を具体的な施策に関して行います。その際、都合の良い情報になっていないかに留意しながら、データを集めて施策の効果検証を行うことが求められます。効果検証の整理をするためにも、適切な仮説立てとその検証を通じて、施策展開をより効果的かつ効率的に進めていきたいと考えています。

データ・アナリティクス入門

分析で見つける自分の可能性

なぜ分析は重要? 分析とは、単にデータを分類し比較するだけでなく、目的に沿った深い理解を得る手法です。基本となる4つのステップ―目的の明確化、仮説の立案、データ収集、結論付け―を踏むことで、より有意義な結果を導き出すことができます。 比較対象はどう決定? 分析を行う際は、比較対象の選定が重要です。分析したい要素以外の条件を揃えるとともに、目的に合った比較対象を選ぶことで、情報が正確かつ具体的に浮かび上がります。 受動から能動へは? これまで、航空会社での営業活動において、社内の分析チームから共有されたデータやコメントを受動的に読み取っていました。しかし今後は、共有された情報に頼るだけでなく、自ら積極的に情報を集め、複数の視点から状況を把握できるよう努めたいと考えています。 予約状況はどう見る? 例えば、週間予約動向の分析では、毎週発表されるどの便・クラスの予約状況が一定の割合で埋まっているというデータを参照するだけでなく、先週との比較や他社の状況との違いを検討し、より広い視野で状況を評価していきたいと思っています。 売上分析の切り口は? また、売上実績の分析においては、単に他社や昨年度同月との比較にとどまらず、国籍、性別、年齢別のデータも取り入れ、顧客のニーズをより深く探る視点を持ちたいと考えています。 仮説設定はどうする? このような分析を行う際には、まず「何を知りたいのか」という目的を明確にし、データを眺める前に自分なりの仮説を立てることが大切です。数値をただ確認するのではなく、自身の考えを持ってさらに深堀りし、既存のコメントに影響されすぎず、自らの視点でデータを解釈する姿勢が求められています。

データ・アナリティクス入門

ロジックツリーで見える問題解決の新視点

問題の本質はどこ? 問題解決には2つの種類があります。1つは正しい状態に戻すための問題解決であり、もう1つは目標に到達するための問題解決です。これらの解決を図るためには、まず問題の所在を明確にし、具体的な問題箇所を特定することが必要です。自分が「これが原因・問題だろう」と考えていても、予期せぬ原因や見逃している問題が存在することがあります。これを防ぐためにロジックツリーを用いることが有効です。 影響はどう見える? また、原因や問題が業務や経営方針にどの程度の影響を及ぼしているのか、ライバルと比較して適切な条件になっているのか、全体の進行の中で重視すべき事象なのか、といった点も考慮に入れなければなりません。 説明は伝わる? 業務上、特定のスタッフに業務負荷が偏ってしまうといった問題を解決する際、原因をなんとなく感覚的に見つけ、「これが原因だろうからこうすれば良いだろう」と進めてきました。しかし、それを周囲に説明し納得してもらい、動いてもらうためには、今回学んだロジックツリーを活用することが効果的であると感じました。 戦略はどこに? 現在注目される訪日旅行において、どのエリアを強化するのか、どのような戦略を取るべきかを考える際、現状やこれまでの訪日旅行のトレンドや傾向についても考慮したいと考えます。 改善策は何だ? 業務改善においては、ロジックツリーを活用して、問題の本当の原因を他の管理職と共に追求します。その上で、人員を増やすべきか、業務フローそのものの効率化を図るべきかについて議論します。また、今期の方針として、訪日旅行に関するどのようなデータが必要かを調査し、その中から必要な情報を選別する予定です。

戦略思考入門

規模の経済性と季節戦略の活用法

規模の効果はどう考える? 規模の経済性については、一般的には規模を大きくすることでコストが下がると言われています。しかし、実際のビジネスではそれほど単純ではありません。たとえば、原材料を大量に発注してコストを削減しようとしても、保管場所の確保や在庫リスク、そして季節変動などの要因を考慮する必要があります。 大量発注は賢い判断? あるクライアントの会社でも、原材料の値上げ対策として大量発注を検討しましたが、保管スペースの制約や季節商材という特性により、単純に規模を追求するのは適切でないとの判断に至りました。ビジネスの基本原則は、自社の状況や制約を踏まえて適切に活用することが重要であることを、改めて実感しました。 事前策はどうする? この学びを実際のクライアントワークで活用していきたいです。たとえば、原材料を取り扱う取引先が値上げ交渉をしてきた場合、その対応について事後に慌てるのではなく、事前に考えておくことが大切です。具体的には、季節要因を考慮し、工場の稼働率を踏まえたうえで、繁忙期に入る前に大量発注を行うことで、こちらから価格交渉を行うことや、それに伴う在庫管理の懸念事項への対処方法を事前に検討しておくべきです。 データ分析の意義は? 過去数年分の出荷台数や出荷先の企業情報をヒアリングし、紙ベースで管理しているクライアントには、まず情報を整理してデータ化することから始めると良いでしょう。そして、過去の実績を基に時系列分析を行い、季節要因を明確にすることが重要です。繁忙期の存在こそ分かっているものの、月ごとの出荷台数の変動を正確に数値で把握できていない現状をまずは正しく理解することを目指します。

クリティカルシンキング入門

イシュー中心で見えた問題解決の真髄

イシュー特定の重要性とは? 「イシュー:「今ここで、答えを出すべき“問い”」というテーマについて考え始める際に、まずイシューを特定することが重要です。常に「問い」を中心に考え、それを組織内で共有し、一貫して押さえ続けます。組織全体で協力して解決を図るためです。 何に注意して進めるべきか? 注意点として、いきなり打ち手に飛びつかないことが挙げられます。目先の課題形成や改善策を実行するだけでは、本質的な解決に至りません。課題の根本原因を抑えることが重要です。施策立案前には仮説を構築し、施策の効果検証を行います。また、上司や同僚、取引先との情報共有や報告も欠かせません。 イシューの共有がなぜ重要か? 自身のメイン業務である「仮説構築~施策立案~効果検証」において、イシューの特定やイシュー中心の施策進行、イシューの共有は必須スキルと感じています。本質的な課題を特定するスキルに加えて、組織全体に齟齬なく共有できるスキルを合わせることで、組織全体で正しく方向性を認識できるよう努めてまいります。 精度向上のために何をすべきか? 次に、現状分析の精度向上についてです。自社だけではなく、競合他社のデータも収集し分析することで精度を高めます。また、短期的にKPIの確認を行い、早期に問題を特定可能な体制を作ります。 フィードバックの活用法は? さらに、社内外からフィードバックをもらうことも大切です。内部ミーティングにおいては、マーケティングチームや他の関連部門と定期的な会議を開催し、見落としている可能性のあるイシューや課題を共有します。また、外部のコンサルタントへ意見を求め、独自の視点でイシューを評価してもらいます。

クリティカルシンキング入門

問題解決力を高める実践的アプローチ

これまでの経験はどう? これまでの学びを総合的に活用し、さらに学び直す機会を得ることができました。実践演習における戦略や総合演習での課題解決を通じて、共通して重要だと感じたのは次の2点です. 問題を分解できる? まず、データにある多様な事実から問題を分解し、イシューを特定すること。次に、対策を立てた上で懸念事項を洗い出し、本当に問題が解決されるかを逆算して確認することです。特に、問題の本質を見極めるためにイシューを特定することが、現在の自分にとって最も重要な課題だと感じています。これらを日常の業務でも活かし、実践を通じて経験を積んでいきたいと思います. 育成は何を重視する? また、学んだことは主に「マネージャー候補者の課題に対する育成計画」でも役立つと考えています。現在、マネージャー候補者を育成するために、イシューを特定し、課題の解像度を高めようとしています。候補者は数十名おり、問題は複雑に絡み合っています。そのため、候補者自身だけでなく、彼らを取り巻く環境にも着目する必要があります。最終的に対策を立てる際には、分解の視点から外れないよう、自問を続けていきたいです. 計画の進め方は? 今後の具体的な行動として、次の2点を実施していきます。まず、課題特定のために集めた資料やヒアリングの情報を基に仮説を立て、様々な視点から問題を分解します(例:問題解決力、ピープルマネジメント、育成力)。次に、会議では受け手の関心がどこにあるのかを考え、論じる目的がぶれないように注意します。会議後には、上司と自分の間でイシューが一致していたか、相手にきちんと伝わっていたかを基にフィードバックを受けたいと思います.

データ・アナリティクス入門

発見!数字が紡ぐ成長物語

現状と目標はどう? データ分析の基本は、まず現状を正確に把握し、理想の状態を明確にすることにあります。現状を理解した上で目標を設定することで、実現可能な改善策の検討が可能となり、より効果的な意思決定につながります。 比較で見えるものは? また、分析作業においては、異なる時期やグループ間での比較が鍵となります。比較を行うことで、問題点や改善策が明確になり、データから得られる示唆が深まると感じました。 切り口の変化に気づく? さらに、データの分解や分類、そして視点の切り替えを適切に行うことが分析の精度向上に直結します。目的に合わせた切り口でデータを見ることで、従来は見落としがちな傾向や改善点が浮かび上がり、最終的に意思決定を行う上で必要な情報が明確になります。 グラフで何が分かる? 実務での分析において、ヒストグラムや散布図を取り入れる試みを行いました。これまで平均値や中央値といった基本的な数値だけで評価をしていたため、賃貸物件の募集データにおけるばらつきや分布の傾向を見逃していました。しかし、ヒストグラムや散布図を作成することで、特定の物件の賃料が極端に高いまたは低いケースが存在していることに気づくことができ、単純な平均値だけでは把握できなかった重要な情報を得ることができました。 次は何に注目する? 今後は、データ収集時に注目すべきポイントや重要な変数を明確にし、分析の目的に合ったデータを選定することを徹底します。また、定期的にヒストグラムや散布図を作成してデータのばらつきや傾向を常時確認し、分析結果を関係者に報告してフィードバックを受けることで、さらなる改善を進めていくつもりです。

データ・アナリティクス入門

分析を活かす!仮説とフレームワークの実践術

仮説はどう見える? 仮説を明確にしてから分析を進めることが重要です。これにより、適切なデータの取得が可能となり、比較したい項目に対して最適なビジュアル化を行うことができます。分析ではいくつかのフレームワークを利用することで、効率的に進めることができます。 成長促進は何が必要? 勤務先の成長を促進するために、どの領域にリソースを投入するべきかを判断する際には、分析結果をもとに経営の意思決定を支援したいです。この際、従来の定性的なニーズ内容に加え、定量的データの分析も考慮に入れます。また、複数のテーマを比較し、最適な選択ができるようなアウトプットを心掛けます。学んだ内容を資料に反映させ、周囲に影響を与えることで、他社のスキル向上へと繋げたいです。 図表作成の第一歩は? Excelで図表を作成するスキルを身につけるためには、苦手意識を払拭し、まずは行動に移すことが重要です。時間がかかっても取り組み、教本などの資料を購入し手元に置きましょう。 仮説構築のコツは? 仮説構築力を養うためには、網羅性のある複数の仮説を立てることが重要です。ロジックツリーの利用や、ブレインストーミングを行うことで、より完結な仮説を構築できます。 実践力はどう磨く? フレームワークに関する知識を増やし、実践力を付けるためには、積極的に情報を交換し、見つけた事例を他人に教えるなどコミュニケーションを大切にします。困った時にはフレームワークを検索する癖をつけ、自身の業務に応用してみましょう。 記録管理はどう活用? これらの知識や成果を一か所に記録する場所を設け、振り返りや忘れ防止に活用することが効果的です。

データ・アナリティクス入門

小さな問いから始まる大発見

分析の仮説はどう? 今後は、自社Webサイトのデータ分析において、依頼を受ける側から自ら積極的にABテストやファネル分析の目的、仮説、プロセスを策定し、実施に移す考えです。各プロセスを詳細に分解することで、どのページやどの段階でボトルネックが生じているのかを明らかにし、原因を追及するとともに、具体的な改善提案ができる分析へと進化させたいと考えています。また、日常生活に存在するささいなデータにも目を向け、シミュレーションを繰り返し行うことで、より一層の分析力向上を目指します。 問題をどう特定? 業務の効率向上や問題解決のためには、まず問題を明確にし、その問題がどの段階で発生しているのかを特定することが重要です。具体的には、以下の点を実践していきます。まず、Webサイトだけでなく、日常生活の中で得られるデータも積極的に収集し、「なぜ」を5回繰り返すことで原因に迫る姿勢を持ちます。次に、あらゆる分野の情報収集を行い、同僚とのコミュニケーションを通じてマーケティングの知識も深めます。加えて、依頼された作業にとどまらず、自主的に分析に取り組むことを意識し、課題に対しては目的や仮説を明確に設定し、複数の仮説を立てながら、ファネル分析やABテストの計画を練ります。 改善策の道筋は? さらに、プロセスをより詳細に分解し、各ステップでのユーザー行動(CS行動)を可視化することで、ボトルネックの特定と原因の解明を進めます。分析結果については、同僚と共有し、議論を重ねながら改善策を提案していく予定です。この一連のプロセスを繰り返し実践することで、より実践的な分析力を身につけ、今後の業務に活かしていきたいと考えています。

「情報 × データ」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right