データ・アナリティクス入門

結果に響くMECE学びのヒント

結果を重視する理由は? 問題解決にあたっては、要因ではなく結果から考える姿勢が大切であると学びました。また、ロジックツリーを作成する際、MECE(漏れなく、ダブりなく)を意識することの重要性も実感しました。特に、厳密さ自体を目的とせず、第3階層程度で異なる要素を加えても構わないという点は、意外性があり印象に残りました。 メール分析のポイントは? 顧客向けキャンペーンメールの分析では、属性をMECEに分類することで、有意差のある項目を見つけ出すことが可能となります。これにより、意味のある仮説が立てられ、有意な差を検証できるA/Bテストの実施につながります。 属性戦略はどんな風に? 今後は、各属性がどのような方法で、どれほどの期間で入手可能かを確認した上で、MECEに分類し、ロジックツリーで整理することが必要だと考えています。このプロセスを通じ、特に注力すべき属性を明確にし、それぞれに応じたメール配信の戦略へと展開していきたいと思います。

データ・アナリティクス入門

日常に息づく比較分析の知恵

比較方法はどう選ぶ? 分析を行う際は、比較が重要であると学びました。たとえば、ある要素の効果を検証する場合、その要素がある場合とない場合を比べ、その他の条件をできるだけ一致させることが求められます。 目的は何で大切? また、データを分析する前に、何のために分析するのか目的を明確にすることが大切です。その目的に沿って必要なデータを収集し、目的に合わせて加工や分析を行い、得られた結果を言語化することで、ビジネス上の判断材料として活用できます。 今後どう実践する? 今回の学びが直ちに業務に活かせる場面は少ないかもしれません。しかし、問題解決の基本的な考え方を意識しながら業務に取り組むことで、今後の課題解決に役立てることができると感じています。 継続の秘訣は? さらに、何事も使わなければ忘れてしまうものです。業務にすぐに適用できなくても、日常生活の中で今回学んだ分析手法を実践し続けることで、着実にスキルを磨いていきたいと考えています。

デザイン思考入門

共感が繋ぐお客様の声のパワー

どう初動で共感? 提案前のニーズヒアリングでお客様のお困りごとを引き出す機会があり、初動の段階での共感が重要であると学びました。購入後のアンケートやインタビューの機会が限られる中、まずはお客様のニーズを理解することがカギであると感じています。 どう言語化が効く? 共感のプロセスを言語化したことで、これまで漠然と行っていた取り組みが明確になり、自身の理解が深まりました。その結果、第三者に自信を持って伝えられるレベルに昇華できたと思います。 現場で意見は聞かれる? また、従来は商品の検証や共感のステップが、現場で実際にお客様の声を反映する機会を欠いたまま、指示に従って進められていました。これにより、現場からの意見が上がりにくくなり、結果として現場力の低下を招いていると考えています。 どう課題を克服する? この課題を解消するため、今後は共感のプロセスに基づくアプローチを一層深化させ、実践的な学びを活かしていきたいと思います。

クリティカルシンキング入門

仮説を超える確かな分析力

分析結果に対して疑問を持つ? 実践演習では、ある博物館のケースを題材に、大人の個人客の減少が主要な原因だと思い込んでいたところ、実際の分析で団体客も減少していることが分かりました。この結果から、すぐに決めつけるのではなく、細かい部分まで丁寧に検証する重要性を実感しました。さらに、グループワークでは参加者全員の意見を聞く中で、まずはどの数字や分析が必要かという全体の定義を明確にし、その上でどの切り口で数字を解釈していくかを考える大切さを改めて学びました。 業務での学びはどう活かす? また、日々の業務においても、単に数字を見るだけでなく、課題や要因についての分析を行う際は、まず切り口を考えた上で仮説を立てる方針を実践していきたいと思います。次に何かを考える際には、意識的に考えを文字に落とし込むことで、より明確なアプローチができると感じています。各自が行った企業分析を再度持ち寄るという方法も、さらなる学びの場として面白いと考えています。

戦略思考入門

限られた資源で成果を出す秘訣

優先順位はどう判断? 限られた資源で成果を最大化するためには、まず優先順位を明確にして、取り組むべきこととそうでないことを判断することが重要だと感じました。 断捨離の決断は? また、何かをやめる際にはエネルギーが必要ですが、現状が本当に最適かどうかを中長期的かつ全体最適の視点で客観的に検証し、データに基づいて判断することが求められます。必要と判断した場合は、勇気を持って決断することが大切です。 作業の見直しどう? 日々の業務の中では、ただ習慣として続けていることや無駄な作業がないかを常に確認し、他の方法で代替できないか、または廃止できないかを見直すことが必要です。 業務配分は最適? さらに、生産性向上が求められる現状においては、限られたリソースをより効率的な業務に配分するため、客観的なデータを活用して何を選択し、どの業務を見直すべきかを検討し、その結果を事業計画に反映させていきたいと考えています。

データ・アナリティクス入門

仮説検証で開く課題解決の扉

本質はどう捉える? 問題解決プロセスでは、「何が問題なのか(what)」「どこに原因があるのか(where)」「なぜその問題が発生しているのか(why)」の3点に対して、徹底的に検証することが重要であると学びました。 原因をどう探る? また、whyの部分については、3Cや4Pといったフレームワークを活用することで、より具体的な原因の特定と分析が可能になることが印象的でした。各アプローチにおいて、仮説を立て、既存または新規のデータを用いて検証する作業が鍵であると感じています。 新たな視点は? 特に、売上データの結果は複合的な要因が重なっており、一概に原因を絞るのは難しいという現実があります。それにも関わらず、自分なりにここが原因だろうという仮説を立て、検証を通して新たな視点や解決策につなげることの重要性を実感しました。今日学んだフレームワークを活用しながら、今後もさまざまな課題にチャレンジしていきたいと思います。

データ・アナリティクス入門

データ分析で気づく改善の一歩

データ分析ってなぜ? 全体を通してデータを分析する重要性を改めて実感しました。今まであまり意識していなかったMECEの考え方―漏れや不足がない状態―について、比較の段階があることやそれぞれの段階で分かる情報の違い、そして明確な発見があるという点が印象に残りました。 着地見込みの工夫は? また、着地見込みを作成する際、単価を中央値で表示するなど細かい部分にも応用できる点を体験でき、シミュレーションに積極的に取り入れていきたいと感じました。今後は、シミュレーション結果や予算、実績とのGAP分析にもこれらの方法を活用し、より精度の高い検討を行いたいと思います。 GAP検証で何が起こる? さらに、シミュレーション実績との比較をもとにGAPの仮説検証を実施し、次の期には軌道修正が図れるよう動いていく予定です。まずは表やグラフを作成して比較し、そこから差異分析を行って仮説を立て、改善に結びつけていきたいと考えています。

データ・アナリティクス入門

仮説で切り拓く新たな発見の道

仮説は何のために? 仮説を立てることで、問題意識が芽生え、物事に対する検証マインドが育まれます。時間軸によって仮説の内容は変化しますが、頻繁に検討することで説得力が増し、スピードや行動の精度が向上します。そのため、仮説を立てた上で実際に行動していくことが重要です。 なぜ結果に違いが? 経理業務は過去のデータを整理する作業ですが、整理後の結果を見て、なぜこのような結果になったのかを考える際に仮説を活用できます。仮説を立てることで、結果が正しい理由があるのか、それとも処理に誤りがあったのかを、まずは検証することが可能です。 何が原因と判断? 具体的には、予算との比較や前年度との比較を行うことで、突出した変化を確認します。もし大きな変化が見られない場合は問題がなかったと判断できますが、何かしらの極端な変動があった場合には、その原因を仮説に基づいて検証することで、より正確な分析が行えるようになります。

クリティカルシンキング入門

多角的視点で探る数字の裏話

数字はどう見える? 数字の分析では、単に数値をそのまま解釈するのではなく、多角的に検証することの重要性を実感しました。MECEの観点から数字を整理・分析することで、現状を正確に把握できるだけでなく、結論に至った理由や背景も明確になると学んだからです。 意見共有はどうする? また、さまざまな立場の人と意見交換する際、分析した数字を根拠として現状を共有することは、認識の齟齬を防ぐうえで大切だと感じました。たとえば、次の企画を提案する際、「なぜこの企画を行うべきなのか」を過去の実績や傾向を基に説明すれば、相手に納得感を持ってもらいやすく、スムーズにアクションへとつなげることができると思います。 議論の進め方は? そのため、事前準備として過去の実績数値をMECEの視点で整理し、どのポジションや役割のメンバーであっても理解できるよう、複数の角度からの分析結果を基に議論を進める姿勢を大切にしたいと感じました。

クリティカルシンキング入門

視点を変える分析で得た新たな発見

最適な分解の方法は? 分解の切り口によって異なる視点が得られることを実感しました。MECEには主に3つの種類があり、無駄と重複を避けるためにはいきなり細かく分けずに進めることが有効であると学びました。階層別、変数分解、プロセス分解を試し、それぞれの分析の対象に合わせた適切な方法を選ぶことが重要です。 医薬品の使われ方は? 自社が取り扱う医薬品の使用傾向を把握する際にも応用できると感じました。患者層の理解に加えて、別の薬剤を選択する医師の傾向も調査すると、効果的な対策が立てやすくなるのではないかと思います。 データ検証はどうする? また、毎週の社内ミーティングでは、それまで試したことのない切り口でデータを分析してみます。これまでのデータも同じ切り口で分析可能かを検討し、社内メンバーと重複なく実行できているか確認します。得られた結果から仮説を立て、それに基づいた活動を行い、次週に検証していきます。

データ・アナリティクス入門

仕組みを解読、未来を拓く

ボトルネック、どう見抜く? 採用プロセスをステップごとに区切り、どこにボトルネックがあるのかを特定していく手法が印象的でした。要素を細かく分解し、整理・比較することで、問題の把握と理解が非常にしやすくなった点が魅力的です。 販促効果はどう検証? 自分の勤務先でも、売上に至るまでのプロセスが「申込件数」「審査承認」「成約」などに大別できるため、より細かく検証したいと考えています。さらに、担当する各販売店ごとに分け、各特徴ごとにグループ分けを行って共通点を洗い出すことで、具体的な対策に結びつける取り組みを行いたいと思います。まずは、特定の支店に焦点を当て、その販売店データを集め比較・検討します。その結果、もし明確な特徴が見えてグルーピングが可能となれば、詳細な報告書を作成し、リベートやアローワンスなどの販促策に活かす予定です。また、A/Bテストが可能な場合は、さらなる効果検証にも挑戦したいと考えています。

アカウンティング入門

ビジネスモデル分析で見つけた新たな視点

ビジネスモデルの理解を深めるには? ビジネスモデルによって提供される価値が異なるため、どこに費用がかかり、どのように利益を生み出すかを理解することができました。他社のP/Lを見比べることで、その特徴や費用のかけ方がわかり、彼らの戦略を想像する手がかりになると感じました。 自社の毎月のP/Lをどう読み解く? まず、自社の状況や自分が関わる事業の状態を、毎月のP/Lをしっかりと読み込むことで理解していきたいと思います。そして、単に計画と実績を把握するだけでなく、なぜそのような結果になったのかを検証し、今後の対策に何が必要かを自分の課題として業務に活かしたいと考えています。 直近と過去のP/Lをどう比較する? さらに、直近のP/Lと過去のP/Lを比較して、どの数字がどのように変化しているのかを分析し、現在の自部門の問題点や必要な対策を明確にして、自分のアクションプランに取り入れていくつもりです。

「結果 × 検証」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right