クリティカルシンキング入門

ピラミッドストラクチャーで変わる仕事術

日常業務で活かす学びとは? 本講座を通じて学んだ内容を振り返り、次の4点を日常業務で意識する必要性を改めて感じました。①目的意識を持つこと、②自己対話を育むこと、③問いを中心に考えること、そして④分かりやすく伝えることです。 クリティカルシンキングの活用法 企画業務においては、施策を考える際や全店展開する際に、クリティカルシンキングを意識したいと思います。役員や上司、部下だけでなく、全社的に情報を伝える場面も多いため、考えるだけでなく、受け手の視点を重視した伝え方も身につけたいです。 論理的な伝え方をどう身につける? 具体的には、頭の中で考えたことを箇条書きにするだけでなく、ピラミッドストラクチャーを用いて主張とその理由、根拠を論理的に整理し、書き出す習慣をつけたいです。これにより、自分の考えの妥当性を自己チェックしながら進めることができ、他人に伝える際や質問された際の論理整理が容易になります。併せて、根拠を多岐にわたって考えておくことで、想定外の質問にも対応できるようになるでしょう。 上司へのアウトプット機会を創出 さらに、学んだことを上司へのアウトプット機会に活用することが重要だと感じています。日常業務の中でじっくり考える時間を作ることが難しいため、過去の経緯を踏まえた難しい問題に対してクリティカルシンキングを用いる課題を設定し、定期的に上司と共有しながら解決を目指す場を持ちたいと思います。このように、学んだことを実践に活かすことで、さらなる成長を目指します。

データ・アナリティクス入門

MECE思考で見える未来

情報で迷う理由は? データ分析の際、目についた情報に振り回され、時間がかかってしまうことや、都合の良い情報ばかりに頼って決め打ちになってしまう問題を感じています。そこで、MECEの考え方を取り入れることにしました。 MECEの切り口は? MECEには、全体を複数の部分に分ける層別分解と、全体を構成する変数に分ける変数分解という2つのアプローチがあります。たとえば、層別分解では年齢、季節、販売チャネルなどで分析し、変数分解では売上=客単価×客数や売上=商品単価×販売数のように捉えることができます。 分解できないのは? また、MECEに分解できない例として、モレなしでダブリがある、モレありでダブリがない、モレありでダブリもある場合が挙げられます。今後は、売上分析や業界、顧客分析、さらには業務の課題解決にもこの考え方を積極的に活用していきたいと考えています。 データ加工のポイントは? 現在、売上分析データを加工中であり、来週からはMECEの視点を取り入れたデータ加工を進める予定です。加えて、ロジックツリーを書き出すことで思考のスピードアップを図りながら、業務の課題解決に向けた取り組みも強化していきます。 情報取得の見直しは? 以前、情報の取得に時間がかかることや、都合の良い情報だけを集めて決め打ちしてしまう点に気がつきました。そのため、現在作成中のデータをもう一度フラットに俯瞰し、MECEを意識したフレームワークを使って再検討に努めています。

戦略思考入門

時間を操り効率を最大化する方法

どこに集中すべき? リソースには限りがあるため、どこに集中し、どこにエネルギーを注ぐのかを選択する必要があります。そのための選択ポイントとして、まずは明確なゴールを設定しましょう。これにより、何を選び、何を捨てるべきかの指針が得られます。次に、数値的根拠を示すことで、判断を主観や経験則に頼らず、客観的に評価することができます。加えて、成果を定量的に測定することで、継続的な取捨選択が可能になります。最後に、ゴールと数値的根拠に基づき優先順位を明確にすることが重要です。この「選択と集中」によって、限られたリソースを最大限に活用できるのです。 自動化はどう進化? 選択の結果が正解かどうかは未来にしか分かりませんが、「自分なりの判断基準を持って選択すること」が大切です。本来、「時間」と「品質」はトレードオフの関係にあると言われますが、バックオフィス業務の自動化はこれを克服する可能性を秘めています。自動化により、業務の効率化による時間短縮、人的エラーの軽減での高品質化、さらには成果物の品質の均一化が可能になります。 業務整理で変化は? 優先順位の高いものにリソースを集中させるためには、まずは現在の業務を圧縮する必要があります。これにより、業務の増加に対応するためにも、業務整理を行い、何を優先すべきかを再確認することが重要です。時間というリソースを有効活用するためにも、生成AIや自動化ツールに関する知識を深め、その活用を通じて、重要な業務に集中できる環境を整えたいと考えています。

デザイン思考入門

試行錯誤が導く新たな一歩

プロトタイプはどう活かす? 業務において、プロトタイプは新しいプロセスやアプリケーションの原型として位置づけられるため、本番の製品やサービスの一部と見なして、開発に過度の時間や労力をかけてしまい、せっかく作り上げたプロトタイプを無理にでも活かそうとしてしまうことがあります。しかし、プロトタイピングの本来の目的は、具体化されたアイデアに対するユーザーのフィードバックを得ることにあるため、効率的に、何度もプロセスを回すことを意識する必要があります。 評価の真実は? 思い描くプロトタイピングのシーンでは、手間をかけて作ったプロトタイプに対してユーザーからの評価が必ずしも期待通りでない場合も考えられます。このとき、単にプロトタイプの作り方が悪かったと考えるのではなく、そもそもの発想や課題定義に問題があった可能性を検証することが重要です。デザイン思考の各ステップにおいては、できる限り手戻りが発生しないよう注意深く進める工夫が求められる一方で、うまくいかなかった場合には直前のプロセスだけに原因を求めず、必要に応じて大きく方向転換する決断力も大切です。 過程重視の意味は? また、「プロトタイプ」と聞くと、自分のアイデアに対する試作品そのものに注目してしまいがちですが、実際にはユーザーからのフィードバックを得る過程全体を重視することが肝要です。そのため、単なる試作品の開発にとどめず、評価を得るまでのプロセス全体を意識した「プロトタイピング」に取り組んでいくべきだと考えています。

クリティカルシンキング入門

学びのこだわり、伝わる工夫

グラフ作成の基本は? グラフ作成時には、まずタイトル、単位、軸の原点を0から始めるといった基本事項を意識する必要があります。時間軸のデータは慣例通り縦のグラフを用い、X軸を基準とした折れ線グラフで傾向や変化、連続性が見えてくるように設定します。また、「何を伝えたいか」という目的に応じてグラフの形式を選ぶことが求められます。普段の業務でグラフを作る機会は少ないかもしれませんが、数字だけでなくTIPを意識して正しい表現方法を取り入れることが大切です。 フォント選びのポイントは? 文字表現については、注目してもらいたい点を過度に強調しすぎず、フォントや色の選択により印象を工夫することがポイントです。さらに、アイコンを補助的に用いることで理解が促進される効果もあります。特にパワーポイントのスライドを作成する際には、フォントの種類や色、アイコンの使い方に細部までこだわると良い印象を与えられるでしょう。 スライド作成の秘訣は? スライド作成時は、情報が出てくる順番に合わせて図表を配置し、事実とともにプレゼンのターゲットに合わせた「何を伝えたいか」を明確にする表現が重要です。帯グラフの幅から比較しやすい特徴を活かしたり、折れ線グラフと棒グラフを一つにまとめる工夫、または矢印などで強調する方法も効果的です。TIPを意識して丁寧に作成することで、見栄えの良いスライドが完成します。 これらのポイントを踏まえ、日々の業務やプレゼンテーションで説得力のある資料作りに役立てたいと思います。

戦略思考入門

戦略思考で切り拓く未来への一歩

長期視点って大事? 戦略思考は短期的な成果だけでなく、長期的な視点に立って計画や行動を進めることで、持続可能なビジネス成長を実現するための重要な要素であると学びました。限られたリソースである時間や人材を最もインパクトの高い活動に集中させるために、フレームワークを活用して幅広い視野を持つことの大切さも実感しています。今後は、内部の戦略だけにとどまらず、外部の市場や競争環境の変化をいち早く察知し、柔軟に対応できる力を身につけたいと考えています。 どう戦略を磨く? 現在、営業企画として業務に従事しており、ターゲットの洗い出し、データ分析、プロジェクト計画の策定といったさまざまな場面で戦略思考の必要性を感じています。今後は、アウトプット作成に際して常に戦略的な視点が反映されているかを確認する習慣を確立し、より質の高い企画立案に努めたいと思います。 未来をどう描く? まずは、本講座の復習や読書を通して知識をさらに深めることを第一歩とし、次のステップとして自社業務におけるシナリオプランニングに取り組みたいと考えています。複数の異なる市場シナリオを設定し、それぞれに対する営業戦略を検討するとともに、データ分析ツールを活用して顧客データや販売データから有用なインサイトを抽出し、戦略の根拠をしっかりと定めたいです。また、メンターや同僚とのディスカッションを通じたフィードバックを取り入れ、PDCAサイクルをしっかり回していくことで、より実践的な戦略思考を養っていく所存です。

戦略思考入門

フレームワークで読み解く経営戦略

戦略思考はどう身につく? 3C分析、SWOT分析、バリューチェーン分析のEラーニングは今回で2回目となります。以前、グロービスの書籍も2度ほど読んでいましたが、職位や業務内容の変化を受け、戦略的な思考をより一層身につけたいという強い思いから再度学ぶこととなりました。改めてフレームワークに基づいて考えることで、行き当たりばったりではなく、全体像を網羅的に把握できる点を実感しました。特に、今はこれまで以上に経営的な視点で、二手先、三手先、あるいは将来戦略を意識し、限られたリソースの中で包括的な課題解決を図る必要性を感じています。そのため、実践の中でこれらのフレームワークを確実に身につけていきたいと考えています。 品質保証に未来は? 製造業における市場品質保証業務については、一見、即効性のあるビジネスに結びつきにくいように映ります。しかし、品質保証は短期的にはコスト削減に、長期的にはブランド力向上に寄与する重要な役割を担っています。3C分析では、市場や顧客から見た品質の視点、競合他社との品質コストの差、そして自社の強み・弱みの整理が求められます。また、SWOTやPEST分析を通じて、DXやAI技術など新たな技術動向やグローバルな環境の変化を把握し、現状を明確にすることが可能です。加えて、バリューチェーン分析によって、取引先や自社内での問題を定量的に検証し、時間やコストがかかっているプロセスを洗い出すことで、今回学んだ知識を具体的な業務上の改善に活かすことができると感じました。

データ・アナリティクス入門

振り返りで切り拓く未来

集客前提を疑ってみる? スクールの課題に対する対応優先順位を誤ってしまいましたが、そこには「また間違った集客を繰り返しそう」という隠れた前提がありました。まずは、この前提を改めることが必要であり、その上で真に解決すべき課題を特定する必要性を感じました。また、生徒データの切り口に関するブレストの中で、「ああそうだ、その観点も必要だ!」との意見があったことから、広い視野を持って落ち着いて検討する重要性を再認識しました。 数字の分析意図は? 分析したい項目がそもそも十分に取得できていない場合もあるため、あらかじめあきらめる部分もある一方で、見るべき数字の優先順位はしっかり決めて取り組む意向です。具体的には、イベントアンケート結果や申込者のデータについて、単に分析するのではなく「何が知りたいのか?その目的は何か?」と自分に問いながら進めるようにしています。 アンケート分析の意義は? 各イベント終了後には、アンケート結果と申込者属性の分析を行い、その内容を報告する必要があります。その際、以下の点を意識して業務にあたっています。まず①どの数値項目を優先的に見るのか、次に②その数値が他のイベントと比較して問題ないか、さらに③比較する際には条件を揃えているか、そして④関係者に報告する際には自分の仮説をセットで伝え、議論を促すかという点です。 特に②以降の実施が十分ではないと感じているため、限られた時間の中で箇条書きなどで条件を明確にし、意識しながら取り組むことを心がけています。

データ・アナリティクス入門

代表値で解く!データ発見の旅

代表値の魅力とは? 今回の学習では、従来の平均値だけでなく、加重平均、幾何平均、中央値といった代表値の種類について新たな知見を得ることができました。それぞれの概念を学ぶことで、データ分析の基本的な考え方を再確認する良い機会となりました。 グラフ選定のポイントは? また、グラフの選び方についても、これまで感覚的に選んでいたグラフの代わりに、何を伝えたいのかという結論を明確にした上で選定する重要性を学びました。これにより、視覚的にデータを効果的に伝える方法を理解できるようになりました。 データ読み取りの工夫は? さらに、データの読み取りにおいても、これまで直感に頼って見ていた部分を見直し、特徴的な箇所に注目するという具体的な指標を取り入れる点が印象に残りました。より重点的に情報を把握する手法を学べたことは、今後の業務に大いに役立つと感じています。 Web分析の疑問点は? 業務面では、Web分析の中で代表値の使用機会が少なかったため、なぜ使用しないのか疑問が生じました。具体的には、1ユーザーあたりの平均ページビュー数や訪問時間帯の最頻値の取り扱いについて、今後の必要性を再考するきっかけとなりました。 数値羅列の問題点は? 最後に、CSVで抽出される数値の羅列では異常値に気づきにくいという実務上の課題も再認識しました。毎日管理しているデータを視覚化することで、より直感的に異常値や問題点を把握し、効果的な分析につなげたいと考えています。

データ・アナリティクス入門

仮説検証で未来を切り拓く

仮説の立案方法は? 今回の講義では、「問題解決の4つのステップ」のうち、問題箇所を特定した後に原因を究明するため、原因の仮説を立てて検証するデータを集める考え方を学びました。原因の仮説立案には、3Cや4Pなどのフレームワークが有効で、視野を広げる軸となると実感しました。 なぜ複数仮説? また、実践力を養うためには、決めつけずに複数の仮説を立て、ヒト・モノ・カネといった要素に網羅性を持たせることが大切です。数字をただ分析するのではなく、何と何を比較して検証すべきかを深く掘り下げる視点が必要だと感じました。 仮説の分類と時間は? ビジネスにおける仮説思考は、「ある論点に対する仮の答え」として、結論の仮説と問題解決の仮説に分類され、時間軸(過去・現在・未来)に沿って内容が変わることが分かりました。正しく仮説検証を実施することで、説得力や仕事のスピード、精度が向上することも理解できました。 仮説習慣の活用法は? 普段から仮説提案型営業を心がけている私にとって、今回の講義は仮説検証の重要性を再認識する良い機会となりました。今後は、3Cや4Pのフレームワークを具体的に活用し、仮説を考える習慣を更に身につけていきたいと思います。 実務での仮説活用は? 日々の業務では、課題解決と検証を繰り返しています。どんな難しい案件に直面しても、自分なりの仮説立案法や問題解決のアプローチについて、フリートークで意見交換ができれば、より一層の学びと成長につながると感じています。

クリティカルシンキング入門

問いが拓く本質と成長の軌跡

イシューの本質は何? 解決すべき課題、つまりイシューを明確にすることの大切さを学びました。なぜなら、本質ではない課題に取り組むことで無駄な時間が増えてしまうからです。また、イシューは経験的に忘れやすいため、定期的に振り返ることも重要であると感じました。(会議中に議論が横道にそれる場合などが参考になりました。) チームリーダーの疑問は? 一方、来年度からチームリーダーを任される立場として、今まで経験のなかったタスクの引継ぎを受けています。その際、タスクの目的、成果物が誰にどのように利用されているか、関係者は誰か、そしてタスクの重要なポイントはどこかといった問いを立てることで、タスクの理解度を高めたいと考えています。特に、リーダーが直接対応するタスクが逼迫すると、顧客からの新たな依頼に迅速に対応できなくなる懸念があるため、事前の段取りをしっかり整えることが求められます。 振り返りで学んだことは? これまでの学びを振り返ると、客観的に物事を捉えるためには、適切な問いを立て、複数の切り口から情報を紐解いて構造化することが不可欠だと再認識しました。しかし、過去はしっかりとした問いを設けず、経験や感覚だけで「類似している」と判断していたため、解像度が粗くなり、手戻りやミスによる工数の増大という問題を招いていました。特に未経験の業務においては、解像度がさらに低くなりがちなため、今後は問いを意識的に立て、記録しながら振り返る習慣を継続していくことが重要だと感じています。

データ・アナリティクス入門

分析で開く意思決定の未来

仮説検証の視覚化は? ライブ授業では、これまで学んできた課題の特定方法や仮説の設定、結果の検証といったプロセスを再確認することができました。特に、仮説検証の成果をどのように可視化するかについては、参加者の意見を聞く中で、棒グラフや円グラフ以外にも表現方法が存在することを知り、新たな視点を得ることができました。また、限られた分析時間の中で、本当に必要な分析を見極めることの重要性を改めて実感しました。データが手元にあると分析したくなりますが、何のために分析するのか、得られた結果をどう活用するのかを常に念頭に置いて進めるべきだと感じました。 分析目的と改善は? 講座を受講する前にデータ分析を学ぶ目的は「意思決定に活用するため」であり、その目的は6週間の学びを経ても変わっていません。授業内ではマーケティングに関する事例も取り上げられましたが、現業務において活かす機会は少ないと感じます。一方で、A/Bテストや4P分析は業務改善のための改善案策定に、また相関分析は将来の経費推計に役立つと考えています。 何かを決定する際は、まずデータ分析で解決可能かどうかを検討しています。その際、何のために分析を行うのか、何を明確にするのかを設定し、ただ単にエクセルでグラフを作成するのではなく、その手法が最適かどうかを熟慮することを習慣にしています。また、年1回の定例報告の場合、長年変わっていない報告形式も多いですが、可能な範囲でより伝わりやすい形式に改善していくことが重要だと感じています。

「業務 × 時間」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right