データ・アナリティクス入門

仮説が切り拓く新たな視点

仮説設定はなぜ必要? データを加工する前に、まず仮説を立てることが非常に重要です。分析は目的があって成り立つため、単に数値や結果そのものにとらわれず、目的に照らした適切な加工方法を検討する必要があります。数値をそのまま受け取るのではなく、自分の観点を加え、他にどんな見方ができるのかという視点の多様性を意識します。また、確からしい仮説の立案のみならず、素早く検証するスピード感も大切です。 分析視点はどう選ぶ? 月次や週次の業務分析においては、どの角度からデータを切り分けるのが最も適切かを常に考慮します。分析後は、まとめた内容が本当に正しい観点に基づいているか、過去の踏襲に陥っていないかを再検討することが求められます。

データ・アナリティクス入門

多角的思考で拓く仮説の極意

全体視点は必要? 仮説は、全体を見渡す視点を持って立てる必要があります。複数の仮説を構築し、網羅性のある状態を維持することが重要だと感じました。 反省にどう向き合う? しかし、仮説が一度立てられた時点で、それで満足してしまうことがあると反省しています。今後は、複数の観点から仮説を組み立て、観点の漏れがないよう努めたいと思います。 検討のポイントは? 具体的には、課題解決のプロセスにおいて「ヒト・モノ・カネ」や「業務プロセス」といった基本の観点を軸に仮説を検討していくことが効果的だと考えています。また、一度仮説を立てた後には、他に見落とすべき観点がないかどうかを常に問い直す姿勢を持つように心がけたいです。

クリティカルシンキング入門

MECE思考で拓く数値の新視点

数字データ整理は? 数字データを分解し、表やグラフなどで見やすく整理すると、情報の捉え方が変わり、違った視点から理解できることに気づきました。情報を整える際は、もれなくダブりなく整理するためにMECEを意識し、層別、変数、プロセスといった切り口で分類することが大切だと実感しています。 事業所データの見方は? また、仕事で各事業所ごとのデータを扱うにあたり、階層別、用途別、期間別といった観点からMECEに基づいて分類することが、傾向の管理や分析に役立っています。数字データを表にまとめ、グラフ化することで、より見やすく、伝えやすい形に加工する工夫が重要だと感じました。

マーケティング入門

ターゲット再定義のススメ

誰にアプローチしてる? 現業において「誰に、何をするのか」という問いが常に語られる中、特に「誰に」が重要であることを改めて実感しました。ターゲティングの評価基準として学んだ6Rの観点から、現状設定しているターゲット層が本当に適切かどうかを振り返り、状況に合わせて常にアップデートする必要性を感じました。 競合の動向はどう? また、市場では競合各社がそれぞれ異なるプロモーションを展開しており、その動きに敏感になることが求められます。競合の動向をしっかり捉えつつ、自社の強みをどのように活かすかという視点を持ち続けることが、勝利への鍵であると学びました。

「視点 × 観点」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right