データ・アナリティクス入門

データに賭けた挑戦と発見

目標設定はどう? 「分析は比較なり」「何を明らかにしたいのか」という考えを軸に、データから得られる情報を見失わないため、まず明確な目標を設定しています。その目標に向かい、必要なデータやストーリーともいえる仮説を構築し、試行と検証を繰り返すことで、求める結果に近づけています。 データ表現はどう? また、取り扱うデータの種類に応じた加工方法やグラフの見せ方が重要であると感じています。そのため、状況に合わせて最適な表現方法を選ぶことに努め、いかなる場合も「とりあえず」での加工を避け、ビジネスにおける分析では、データに入る前に「目的」や「仮説」がしっかり整っていることを確認しています。 ランニング費用はどう? これまで部門費管理を想定していた中で、担当しているITツールのランニングコストについても、使用金額や実際の作業時間など、これまで取得してこなかった新たなデータ要素を活用していく計画です。これにより、必要なツールや今後の投資対象となるソフトウエアの分析に役立てようとしています。 データ収集の工夫はどう? さらに、データが不足している点を解消するため、まずは必要なデータの収集に力を入れると同時に、作業の効率化や一部自動化の導入も視野に入れています。今回の講座を通じて、時間の有限性を改めて認識し、これからはより計画的に活動していく所存です。

データ・アナリティクス入門

仮説から広がる学びの扉

仮説の重要性を感じる? 仮説とは、ある論点に対する、または不明な事柄に対する仮の答えのことです。仮説を立てた上で、その検証のためにどのようなデータ収集が必要かを考えることが重要です。 データ収集はどう考える? 具体的には、仮説を立てる際には比較する指標を意図的に選び、平均や標準偏差の算出など、一手間を惜しまない努力が求められます。また、必要なデータが不足している場合は、誰にどのように情報を求めるか、どんな手法で収集するかを検討し、反論が出る可能性も想定して複数のデータ収集手段を準備することが大切です。 複数仮説で探る方法は? さらに、問題箇所の特定には、一つの仮説に固執せず、複数の仮説を立てることが必要です。これにより、各仮説同士で網羅性を持たせ、より広い視野で問題にアプローチできます。頭の中だけで考えるのではなく、視覚的に仮説を書き出すことで、検証作業の効率をさらに高められると感じています。 経験と共有の大切さは? 実務経験が積まれるほど予想は立てやすくなり、その予測に基づいたデータ分析に陥りがちですが、今後はまず複数の仮説を明確に書き出し、漏れなく網羅することを意識したいと思います。また、上司やメンバーとも仮説を共有することの重要性を認識し、共通の意見を持って話し合うことで、コミュニケーションをより円滑に進めたいと考えています。

クリティカルシンキング入門

プレゼンとメール改革で顧客を引きつける方法

「視覚化」って何? 「視覚化の目的」と「伝えるべきメッセージ」という言葉に、私自身とても驚かされました。日常業務の中で作成している報告書やメール、プレゼンテーション資料が単なる作業になってしまっていないか、と考えさせられました。これらの言葉に照らし合わせ、内容や表現が適切かを改めて見直していきたいと感じています。 プレゼン資料はどう伝える? 特に、会社紹介のプレゼンテーション資料やそれを送付するメールについて、活用と実践を重ねていく必要性があります。私は新規の潜在顧客を訪問する際に会社を紹介するプレゼンテーションを行うことが多いですが、現在の方法が十分かどうか、相手の知りたい情報をわかりやすく伝えられているかを再確認したいと思います。メールでも、丁寧に書くことを心がけていますが、書き上げると長くなりがちです。読み手にとって理解しやすい文章になっているかを意識し、より良いメール作成を目指したいです。 相手への意識は足りる? プレゼンテーションを見せる相手やメールを送る相手のことを常に意識することも重要です。相手の業界や事業内容に応じて、スライドを削ったり、追加や修正をしたりする必要がある場合があります。弊社に対するさらなる興味を引く内容になっているか、来週以降の新規訪問に向け、プレゼンテーションを見直し、修正することに力を入れたいと思います。

データ・アナリティクス入門

データで解き明かす!仮説立案の極意

仮説の種類と意義を知る 仮説とは、ある論点に対する仮の答えのことを指します。仮説には目的に応じて「結論の仮説」と「問題解決の仮説」がありますが、その中でも仮説は様々なフレームワークを用いて複数用意する必要があります。検証方法としては、データ収集が重要であり、目的対象を検討した上でアンケート調査や口頭調査を行うことが有効です。 打ち手を選ぶ際のフレームワーク活用法は? 業務に活用できる場面としては、打ち手の検討があります。問題解決のためにどの打ち手が効果的かを考える際には、フレームワークを用いてどこに効果があるかを検討することが求められます。ブレインストーミングから打ち手を選定する際にも、枠組みから検討し、その打ち手の効果測定や仮説作りのためのデータ収集が必要です。 フレームワークで複数視点を持つには? 複数の仮説を持ちながら物事を検討することは重要です。フレームワークを活用することで、様々な視点から会議に参加する準備が整います。そのためには、フレームワークの知識を習得し、何が論点になっているのかを正確に確認することが必要です。 データ検証の質を高める手法 データ検証の項目を洗い出す際には、目的が曖昧なままアンケート調査を行うのではなく、目的を明確に定め、それに沿った項目や枠組みを検討しながら実施することで、質の高い結果が得られます。

アカウンティング入門

経営の数字に秘めた物語

貸借対照表の役割は? 貸借対照表は、お金の使い道と調達方法が表裏一体であることを両側面から確認できる重要な資料です。まず、資産はその変動性によって「流動資産」と「固定資産」に分けられ、1年以内に変動する可能性があるかどうかで判断されます。資産の金額が大きいほど会社の規模は示されますが、内訳や構成を確認することで、その資産がどの程度安定しているのかを見極めることができます。 流動資産と固定資産の違いは? また、企業の業種やビジネスモデルにより、固定資産と流動資産の比率は大きく異なります。初期投資が必要な業界では固定資産の割合が高くなる傾向にある一方で、流動性を重視する企業では流動資産の比率が高くなることが多いです。こうした視点から、勘定科目の設定やインポートを行う際、自身でその科目が流動なのか固定なのかを推測できるようになると、より深い理解につながります。 他社比較で見るポイントは? さらに、自社と競合他社の貸借対照表を比較することで、純資産と負債、流動資産と固定資産の割合や金額の規模感、さらには自己資本比率といった数値から企業の健全性や経営の安定度を確認することができます。決算書を細かく分析することで、たとえ赤字が出た場合でも、企業が存続できる要因や、市場の変動に対してどの程度影響を受けやすいのかを把握する手がかりとなるでしょう。

戦略思考入門

実務革新を支える分析フレームワークの力

フレームワークはどう見る? 複数のビジネスフレームワークの概要や活用方法を学ぶ中で、各フレームワークを実務にどう活かすかについて深く考える機会となりました。自分自身の思考も大切ですが、過去の経験に頼ると見落としがちな視点もあるため、フレームワークを通じて多角的に物事を分析することの重要性を実感しています。 3C分析はどう捉える? 現在、3C分析に取り組んでいますが、特に他社の分析が難しいと感じています。得られる情報は表面的な部分も多く、より具体的かつ同じ粒度で市場、顧客、自社を捉える必要があると考えています。今後は、可能な範囲で深く掘り下げることで、より実践的な分析ができるよう努めたいと思います。 SWOTの見直しは? 一方で、SWOT分析については、本当にそれが強みであるのか、または見えていない弱みがないかを丁寧に検討していくことが肝心だと感じています。社内にとどまることで陥りがちな固定観念にとらわれず、常識を見直して深堀りを進めることが求められると考えています。 今後の対策はどう? これからは、各フレームワークを正しく理解し活用することを目指します。特に3C分析では、3つの要素を同じレベルの粒度で徹底的に分析し、その結果については上司とも共有し、認識のズレを解消することで、より実務に即した取り組みを進めていきたいと思います。

クリティカルシンキング入門

数字の捉え方を変える新発見への旅

数字の切り口をどう捉える? 数字の切り口には複数のパターンがあり、その見え方は切り方次第で変わるということがよく理解できました。しかし、切り口によっては解釈を誤る可能性もあるため、それをどのように防ぐかが重要なポイントだと感じました。 フレームワーク活用のヒントは? 分解の方法として3つのフレームワークが存在し、特にプロセスで切り分ける方法は今後意識して取り入れたいと思います。これらが効果を発揮するためには、ある程度の基礎知識やMECEといった考え方が必要であり、体系的に知識やスキルを習得する必要性を感じました。 管理会計で何を見極める? 現在の職務において、既存事業の理解には、売上構成などを管理会計的に分析することが重要だと考えています。ここでGailという手法が活用できると思いました。最初に事業を分解して特性を理解し、その特性から課題を洗い出していきたいと考えています。そして、今後の社会情勢と照らし合わせて事業の方向性を整理したいです。 整理と議論はどう進める? まずは既存事業部の情報収集を始め、その一方で管理会計の知識を身につけ、管理会計としてのプロセスを整理し、フォーマットを作成してみたいと思います。これにより自身の事業理解を深め、経験者とディスカッションを行い、現状の事業課題や今後の事業戦略に反映したいと考えています。

リーダーシップ・キャリアビジョン入門

リーダー経験がなくてもできる工夫

リーダーシップには何が必要? リーダーとして考慮すべき点は、自分自身の感覚に頼ることが多かったと感じました。しかし、事業とメンバーの2軸から判断し、環境やメンバーの状況に応じた適切な声掛け方法を考えるフレームワークは、かかわり方を検討するうえで最低限必要な内容であると認識しました。もし、事業やメンバーの理解において知識が不足していると感じた場合は、しっかりとキャッチアップを行うべきだと考えています。 メンバーを動かすには? 私自身はリーダーではないのですが、メンバーに動いてもらいたいときに躊躇してしまうことがあります。そこで、事業とメンバーの2軸から考慮し、環境とメンバーの状況に応じた声掛けの方法を工夫することで、自信をもって依頼できるようになりたいと考えています。今週はその考え方を意識し、1週間メンバーとのやり取りを行います。これにより、自分のクセや改善点に気づき、改善の機会にしたいと思います。 目標設定と役割分担における課題 具体的には、メンバーに動いてもらうためには、ある程度指示型に近い対応が必要だと思いました。私は上長ではないため直接的な指示はできませんが、お願いしたい内容を明確に文書化し、それについて議論する必要があると考えています。それは、現在の環境では目標が不明確で、メンバー間の役割分担に関するコンフリクトが多いからです。

デザイン思考入門

実践体感で学ぶイノベーション

プレゼンは納得できる? プロトタイプの説明については、完成されたプレゼンシートにて発表する方が納得感が得られると感じました。そのため、プロトタイプ作成や報告の優先事項は、スピード、実際に体感・体験できること、そして低コストであると考え、報告もこれらを重視しています。 体感をどう見直す? また、これらの優先事項を活かすためには、人間が直接体感・体験した感想を重要な情報として捉え、AIを活用して視覚化する方法が有効であると学びました。 データ収集の極意は? 業務におけるプロトタイプやテストは、図面やCGでの可視化に加え、実際に試作された空間として創出されています。これらに対して、顧客の反応を定性的なデータのみならず定量的なデータとしても捉え、比較できるようにすることが求められます。そのため、どのようなデータを収集し、何を提示するか、また提示することでどのような課題解決やニーズの充足につながるかを事前に検討する必要があります。 クライアントの声は? さらに、コミュニケーションの活性化を求めるクライアントに対しては、彼らが何を求めているのかを十分に確認しながら試作アイデアを実際の空間に反映させ、図面化します。そして、アンケートによる定性調査と、図面や空間に対するドット投票による定量調査の両軸で評価を行う取り組みが重要だと考えています。

クリティカルシンキング入門

適切な問いが導くデータ活用術

適切な問いはなぜ? 今週の学びを通じて、問題解決における「適切な問いの設定」の重要性を改めて認識しました。明確に定義された「解決すべき課題」が、効果的な分析と解決策の導出につながることを学びました。また、データの適切な加工と分析によって情報を構造化し、視覚的に明確な形で提示する手法の有用性を実感しました。さらに、データの図表化が分析の精度向上に寄与することを体感し、実務での具体的な活用方法を見出すことができました。 現職での実践は? 「問いを立てる力」と「データの分析手法」を現職の業務改善プロジェクトで実践していきます。業務フローの課題特定に際しては、チームメンバーと「本質的な課題」を共有し、分析を深めるプロセスを確立しようと考えています。また、提案資料作成においてはデータの視覚化を通じて説得力を高め、経営層の的確な意思決定をサポートしたいと思います。 解決力高める秘訣は? 課題解決力を高めるため、以下の取り組みを実践します。毎週の振り返りで課題を整理し、本質的な問いを設定し、分析結果を図表化してチームで共有し、活発な意見交換を行います。わかりやすく論理的な資料作成を心がけ、改善を重ねます。また、学んだ内容を繰り返し実践し、定期的な振り返りで成長を目指します。これらの取り組みを通じて、実務での課題解決力を高めていきたいと考えています。

データ・アナリティクス入門

プロセス分解で業務改善の新たな一歩

プロセス分解の重要性とは? 問題の原因を探る方法として、プロセス分解が非常に有効である。例えば、広告であれば表示からクリック、クリックから申し込み(コンバージョン)といった形で細かく分解することができる。また、解決法(HOW)を検討する際にはA/Bテストが有効である。この方法では、比較対象以外の条件を揃え、目的を明確にすることが重要である。 数字だけではわからないことは? 現在の企画管理業務では、出てきた数字だけで分析や判断をしてしまうことが多い。しかし、出てきた数字の要因がどこにあるのかを探るためには、細かいプロセス分解ができなくても、大枠でのプロセスに分けて見ることができるのではないかと考えた。今回の講義を通して、A/Bテストの有効性を学べたが、A/Bテストの範疇を超えた検証(生産プロセスの改善や販売における改善検証)のやり方についても学びたいと思った。 データ分析の効率化をどう進める? 講義では、身近なデータを使ってプロセス分解を行う方法について触れられた。日々の業務におけるデータ分析のスピードアップや、分析に十分な時間を確保できているかを検証する必要を感じた。具体的には、データ収集、データ加工、分析、共有にそれぞれどれくらいの工数がかかっているのかを明確にし、さらに効率化して、より早く深い分析と共有を実践できる方法を探りたい。

データ・アナリティクス入門

ファネル分析で顧客行動を最適化する方法

ファネル分析の重要性とは? マーケティング分野での業務経験があるため、比較的知っていることが多かったですが、ファネル分析において顧客の行動プロセスを適切に設定する必要性を改めて認識しました。また、プロセス×ウォーターフォールチャートはあまり使っていなかったので、今後活用してみたいと思います。 ABテストの基本と注意点は? 以下、授業メモです。 ◆ABテスト - ABテストは1要素ずつ行います。複数の要素をテストしたい場合は、別の手法を検討する必要があります。 ◆ファネル分析 - ユーザーの利用段階ごとに、どの段階でユーザーが離脱しているのかを可視化します。 - プロセス×ウオーターフォールチャートを適切に活用します。 - 顧客の行動プロセスを適切に設定することが重要です。 GA4での課題解決にどう取り組む? GA4でのファネル分析を新たに作成する際には、顧客の行動プロセスを意識します。また、プロセス×ウオーターフォールチャートを適切に活用し、ABテストもページスピードが低下するリスクを考慮しつつ活用を検討します。 ちょうど製品サイトのリニューアルを進めており、GA4の設定も見直す予定です。顧客の行動プロセスを意識したファネル分析を行い、原因探索が適切に行えるようにします。また、見出した原因に基づく改善にはABテストを活用します。

「方法」に関する類似の人気キーワード

ご自身のペースでいつでもどこでも学習できる
6週間の短期集中オンライン講座「ナノ単科」 6週間の短期集中
オンライン講座「ナノ単科」

1週間毎に区切られた6週間のカリキュラムを、他の受講生とともに、オンラインかつ好きな時に自分のペースで学び、仕事で実践・活用する一歩を踏み出せる内容となっております。
to left to right